Startseite Investigation of conductivity, SEM, XRD studies of Mg2+ ion based TiO2 nanocomposite PVDF-HFP polymer electrolyte and application in a dye sensitized solar cell
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of conductivity, SEM, XRD studies of Mg2+ ion based TiO2 nanocomposite PVDF-HFP polymer electrolyte and application in a dye sensitized solar cell

  • Mallikarjun A. , Siva Kumar J. EMAIL logo , Sreekanth T. , Sangeetha Mahendrakar , Maheshwar Reddy Mettu , Vikranth Reddy M. und Jaipal Reddy M. EMAIL logo
Veröffentlicht/Copyright: 11. August 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The potential effect of nano TiO2 in poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) based polymer electrolyte and their application in a dye sensitized solar cell have been investigated. The solution casting process was used for fabrication of nano TiO2 loaded in Mg 2+ ion based PVDF-HFP solid polymer electrolyte (SPE), and characterized using conductivity, scanning electron microscopy (SEM), X-ray diffraction (XRD) and photovoltaic studies. XRD investigations reveal the broadening of specific peaks, which shows the occurrence of α, β and γ polymorphous phase transitions that commence the amorphous character and ion mobility. The SEM pictures revealed an interconnecting network of micro-porous nature, and an average diameter of the pores of ∼0.38 µm was obtained by using Gaussian curve fitting. Ion transport is facilitated by the high concentration of pores, which is responsible for the efficient absorption of a significant amount of electrolyte. The photovoltaic characteristics of dye sensitized solar cell (DSSC) estimated efficiency (η) is 9.9999%, and the fill factor is 0.84. Furthermore, the stability performance of the nanocomposite polymer electrolyte was improved and sufficient for use over an extended length of time, suggesting potential applications as a separator in solid state ionic conductors.


Corresponding authors: Siva Kumar J., Department of Physics, Osmania University, Hyderabad, Telangana, India, E-mail: ; and Jaipal Reddy M., Department of Physics, Palamur University, Mahabubnagar, Telangana, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Wen, T. C., Tseng, H. S., Cheng, T. T. Composite electrolytes comprising polytetramethylene/polypropylene glycol-based waterborne polyurethanes and polyethylene oxide via a mixture design approach. Ind. Eng. Chem. Res. 2000, 39, 72–78; https://doi.org/10.1021/ie990373c.Suche in Google Scholar

2. Fenton, D. E., Parker, J. M., Wright, P. V. Complexes of alkali metal ions with poly (ethylene oxide). Polymer 1973, 14, 589; https://doi.org/10.1016/0032-3861(73)90146-8.Suche in Google Scholar

3. Zhang, B., Zhang, Y., Zhang, N., Liu, J., Cong, L., Liu, J., Sun, L., Mauger, A., Julien, C. M., Xie, H., Pan, X. Synthesis and interface stability of polystyrene-poly (ethylene glycol)-polystyrene triblock copolymer as solid-state electrolyte for lithium-metal batteries. J. Power Sources. 2019, 428, 93–104; https://doi.org/10.1016/j.jpowsour.2019.04.033.Suche in Google Scholar

4. Gao, H., Xue, L., Xin, S., Goodenough, J. B. A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angew. Chem. 2018, 57, 5449–5453; https://doi.org/10.1002/anie.201802248.Suche in Google Scholar

5. Shen, X., Xu, W., Xu, J., Liang, G., Yang, H., Yao, M. Quasi-solid-state dye-sensitized solar cells based on gel electrolytes containing different alkali metal iodide salts. Solid State Ionics. 2008, 179, 2027–2030; https://doi.org/10.1016/j.ssi.2008.06.027.Suche in Google Scholar

6. Huang, J., Liao, Y., Li, G., Xu, N., Xu, M., Li, W. Cyclic stability improvement in a blended P (VdF-HFP)/P (BMA-AN-St)-based gel electrolyte by electro spinning for high voltage lithium ion batteries. Electrochim. Acta. 2019, 299, 45–54; https://doi.org/10.1016/j.electacta.2018.12.168.Suche in Google Scholar

7. Panero, S., Scrosati, B. Gelification of liquid–polymer systems: a valid approach for the development of various types of polymer electrolyte membranes. J. Power Sources. 2000, 90, 13–19; https://doi.org/10.1016/S0378-7753(00)00438-9.Suche in Google Scholar

8. Gonçalves, R., Miranda, D., Almeida, A. M., Silva, M. M., Meseguer-Dueñas, J. M., Ribelles, J. G., Lanceros-Méndez, S., Costa, C. M. SPEs based on lithium bis (trifluoromethanesulfonyl) imide/poly (vinylidene fluoride-co-hexafluoropropylene) for safer rechargeable lithium-ion batteries. Sustain. Mater. Technol. 2019, 21, e00104; https://doi.org/10.1016/j.susmat.2019.e00104.Suche in Google Scholar

9. Pitawala, H. M. J. C., Dissanayake, M. A. K. L., Seneviratne, V. A. Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the SPE (PEO)9LiTf. Solid State Ionics. 2007, 178, 885–888; https://doi.org/10.1016/j.ssi.2007.04.008.Suche in Google Scholar

10. Zhang, H. H., Maitra, P., Wunder, S. L. Preparation and characterization of composite electrolytes based on PEO (375)-grafted fumed silica. Solid State Ionics 2008, 178, 1975–1983; https://doi.org/10.1016/j.ssi.2007.11.021.Suche in Google Scholar

11. Song, Y., Yang, L., Li, J., Zhang, M., Wang, Y., Li, S., Chen, S., Yang, K., Xu, K., Pan, F. Synergistic dissociation-and-trapping effect to promote Li-ion conduction in polymer electrolytes via oxygen vacancies. Small. 2021, 17, 2102039; https://doi.org/10.1002/smll.202102039.Suche in Google Scholar PubMed

12. Nan, C. W., Fan, L., Lin, Y., Cai, Q. Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys. Rev. Lett. 2003, 91, 266104; https://doi.org/10.1103/PhysRevLett.91.266104.Suche in Google Scholar PubMed

13. Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Sanz, Y. E., Lagaron, J. M., Miesbauer, O., Bianchin, A., Hankin, S., Bölz, U., Perez, G., Jesdinszki, M., Lindner, M., Scheuerer, Z., Castello, S., Schmid, M. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials. 2017, 7, 74; https://doi.org/10.3390/nano7040074.Suche in Google Scholar PubMed PubMed Central

14. Bitinis, N., Hernández, M., Verdejo, R., Kenny, J. M., Lopez-Manchado, M. A. Recent advances in clay/polymer nanocomposites. Adv. Mater. 2011, 23, 5229–5236; https://doi.org/10.1002/adma.201101948.Suche in Google Scholar PubMed

15. Huo, Z., Dai, S., Wang, K., Kong, F., Zhang, C., Pan, X., Fang, X. Nanocomposite gel electrolyte with large enhanced charge transport properties of an I3−/I− redox couple for quasi-solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cell. 2007, 91, 1959–1965; https://doi.org/10.1016/j.solmat.2007.08.003.Suche in Google Scholar

16. Zarca, R., Campos, A. C. C., Ortiz, A., Gorri, D., Ortiz, I. Comprehensive study on PVDF-HFP/BMImBF4/AgBF4 membranes for propylene purification. J. Membr. Sci. 2019, 572, 255–261; https://doi.org/10.1016/j.memsci.2018.11.023.Suche in Google Scholar

17. Park, B., Schaefer, J. L. Polymer electrolytes for magnesium batteries: forging away from analogs of lithium polymer electrolytes and towards the rechargeable magnesium metal polymer battery. J. Electrochem. Soc. 2020, 167, 070545; https://doi.org/10.1149/1945-7111/ab7c71.Suche in Google Scholar

18. Saha, P., Kanchan Datta, M., Velikokhatnyi, O. I., Manivannan, A., Alman, D., Prashant, N., Kumta, P. N. Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 2014, 66, 1–86; https://doi.org/10.1016/j.pmatsci.2014.04.001.Suche in Google Scholar

19. Yoo, H. D., Shterenberg, I., Gofer, Y., Gershinsky, G., Pour, N., Aurbach, D. Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 2013, 6, 2265–2279; https://doi.org/10.1039/C3EE40871J.Suche in Google Scholar

20. Noor, M. M., Buraidah, M. H., Yusuf, S. N. F., Careem, M. A., Majid, S. R., Arof, A. K. Performance of dye-sensitized solar cells with (PVDF-HFP)-KI-EC-PC electrolyte and different dye materials. Int. J. Photoenergy 2011, 2011, 1–5; https://doi.org/10.1155/2011/960487.Suche in Google Scholar

21. Priya, A. R. S., Subramania, A., Jung, Y. S., Kim, K. J. High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF−HFP membrane electrolyte. Langmuir. 2008, 24, 9816–9819; https://doi.org/10.1021/la801375s.Suche in Google Scholar

22. Verma, P., Singh, A., Maji, T. K. Photo-modulated wide-spectrum chromism in Eu3+ and Eu3+/Tb3+ photochromic coordination polymer gels: application in decoding secret information. Chem. Sci. 2021, 12, 2674–2682; https://doi.org/10.1039/D0SC05721E.Suche in Google Scholar

23. Shalini, S., Balasundaraprabhu, R., Kumar, T. S., Prabavathy, N., Senthilarasu, S., Prasanna, S. Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review. Int. J. Energy Res. 2016, 40, 1303–1320; https://doi.org/10.1002/er.3538.Suche in Google Scholar

24. Vinoth, S., Kanimozhi, G., Kumar, H., Srinadhu, E. S., Satyanarayana, N. High conducting nanocomposite electrospun PVDF-HFP/TiO2 quasi-solid electrolyte for dye-sensitized solar cell. J. Mater. Sci. Mater. Electron. 2019, 30, 1199–1213; https://doi.org/10.1007/s10854-018-0388-z.Suche in Google Scholar

25. Prabakaran, K., Mohanty, S., Nayak, S. K. Improved electrochemical and photovoltaic performance of dye sensitized solar cells based on PEO/PVDF–HFP/silane modified TiO2 electrolytes and MWCNT/Nafion® counter electrode. RSC Adv. 2015, 5, 40491–40504; https://doi.org/10.1039/C5RA01770J.Suche in Google Scholar

26. Issa, A. A., Al-Maadeed, M., Luyt, A. S., Mrlik, M., Hassan, M. K. Investigation of the physico-mechanical properties of electro spun PVDF/cellulose (nano) fibers. J. Appl. Polym. Sci. 2016, 133, 43594; https://doi.org/10.1002/app.43594.Suche in Google Scholar

27. Calvo, J. I., Hernandez, A., Caruana, G., Martınez, L. Pore size distributions in microporous membranes: I. surface study of track-etched filters by image analysis. J. Colloid Interface Sci. 1995, 175, 138–150; https://doi.org/10.1006/jcis.1995.1439.Suche in Google Scholar

28. Martinez-Villa, F., Arribas, J. I., Tejerina, F. Quantitative microscopic study of surface characteristics of track-etched membranes. J. Membr. Sci. 1988, 36, 19–30; https://doi.org/10.1016/0376-7388(88)80003-6.Suche in Google Scholar

29. Manuputty, M. Y., Dreyer, J. A., Sheng, Y., Bringley, E. J., Botero, M. L., Akroyd, J., Kraft, M. Polymorphism of nanocrystalline TiO2 prepared in a stagnation flame: formation of the TiO2- II phase. Chem. Sci. 2019, 10, 1342–1350; https://doi.org/10.1039/C8SC02969E.Suche in Google Scholar PubMed PubMed Central

30. Parangusan, H., Ponnamma, D., Al-Maadeed, M. A. A. Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Sci. Rep. 2018, 8, 1–11; https://doi.org/10.1038/s41598-017-19082-3.Suche in Google Scholar PubMed PubMed Central

31. Zeid, E. F. A., Ibrahem, I. A., Ali, A. M., Mohamed, W. A. The effect of CdO content on the crystal structure, surface morphology, optical properties and photocatalytic efficiency of p-NiO/n-CdO nanocomposite. Results Phys. 2019, 12, 562–570; https://doi.org/10.1016/j.rinp.2018.12.009.Suche in Google Scholar

32. Kamarudin, K. H., Isa, M. I. N. Structural and DC ionic conductivity studies of carboxy methylcellulose doped with ammonium nitrate as SPEs. Int. J. Phys. Sci. 2013, 8, 1581–1587; https://doi.org/10.5897/IJPS2013.3962(36).Suche in Google Scholar

33. Saikia, D., Han, C. C., Chen-Yang, Y. W. Influence of polymer concentration and dyes on photovoltaic performance of dye-sensitized solar cell with P (VdF-HFP)-based gel polymer electrolyte. J. Power Sources. 2008, 185, 570–576; https://doi.org/10.1016/j.jpowsour.2008.06.063.Suche in Google Scholar

34. Funaki, T., Funakoshi, H., Kitao, O., Onozawa-Komatsuzaki, N., Kasuga, K., Sayama, K., Sugihara, H. Cyclometalated ruthenium (II) complexes as near-IR sensitizers for high efficiency dye-sensitized solar cells. Angew. Chem. Int. Ed. 2012, 51, 7528–7531; https://doi.org/10.1002/anie.201108738.Suche in Google Scholar PubMed

Received: 2021-11-26
Accepted: 2022-06-16
Published Online: 2022-08-11
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0306/html
Button zum nach oben scrollen