Home Computational prediction of electrical percolation threshold in polymer/graphene-based nanocomposites with finite element method
Article
Licensed
Unlicensed Requires Authentication

Computational prediction of electrical percolation threshold in polymer/graphene-based nanocomposites with finite element method

  • Amir Veiskarami , Dariush Sardari , Shahryar Malekie EMAIL logo , Farshid Babapour Mofrad and Sedigheh Kashian
Published/Copyright: August 8, 2022
Become an author with De Gruyter Brill

Abstract

In this research work, a two-dimensional model to predict the electrical percolation threshold (EPT) of the polymer/graphene-based nanocomposites in different concentrations of the randomly dispersed inclusions in various polymer matrices is introduced using the finite element method (FEM). The predicted EPT values were validated by other experimental results for different nanocomposites. Results showed that the electrical conductivity of different nanocomposites is significantly related to the percentage weight of the reinforcing phase in the polymer matrix. Furthermore, the addition of graphene-based nano-fillers in the polymer matrix caused a decrease in the tunneling distance in nanocomposites.


Corresponding author: Shahryar Malekie, Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O. Box 31485-498, Karaj, Iran, E-mail:

Acknowledgments

This research work was extracted as part of a Ph.D. thesis by Mr. A. Veiskarami, Ph.D. student at the Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran. We appreciate those who supported us in handling this research, especially professor Farhood Ziaie from NSTRI of Iran.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

1. Rahimi, A., Malekie, S., Mosayebi, A., Sheikh, N., Ziaie, F. Study on polystyrene/MWCNT nanocomposite as a temperature sensor. Int. J. Nanosci. Nanotechnol. 2021, 17, 55–63.Search in Google Scholar

2. Aryanfar, A., Medlej, S., Tarhini, A., Damadi, S. R., Goddard, W. A.III. 3D percolation modeling for predicting the thermal conductivity of graphene-polymer composites. Comput. Mater. Sci. 2021, 197, 110650; https://doi.org/10.1016/j.commatsci.2021.110650.Search in Google Scholar

3. Jang, S. H., Park, Y. L. Carbon nanotube-reinforced smart composites for sensing freezing temperature and deicing by self-heating. Nanomater. Nanotechnol. 2018, 8, 1847980418776473; https://doi.org/10.1177/1847980418776473.Search in Google Scholar

4. Karimov, K. S., Mahroof-Tahir, M., Saleem, M., Chani, M. T. S., Niaz, A. K. Temperature sensor based on composite film of vanadium complex (VO2 (3-fl)) and CNT. J. Semiconduct. 2015, 36, 073004; https://doi.org/10.1088/1674-4926/36/7/073004.Search in Google Scholar

5. Neitzert, H. C., Vertuccio, L., Sorrentino, A. Epoxy/MWCNT composite as temperature sensor and electrical heating element. IEEE Trans. Nanotechnol. 2010, 10, 688–693; https://doi.org/10.1109/tnano.2010.2068307.Search in Google Scholar

6. Zhang, X., Xiang, D., Wu, Y., Harkin-Jones, E., Shen, J., Ye, Y., Tan, W., Wang, J., Wang, P., Zhao, C., Li, Y. High-performance flexible strain sensors based on biaxially stretched conductive polymer composites with carbon nanotubes immobilized on reduced graphene oxide. Compos. Appl. Sci. Manuf. 2021, 151, 106665; https://doi.org/10.1016/j.compositesa.2021.106665.Search in Google Scholar

7. Yang, L., Jiang, C., Yan, J., Shen, Y., Chen, Y., Xu, L., Zhu, H. Structuring the reduced graphene oxide/polyHIPE foam for piezoresistive sensing via emulsion-templated polymerization. Compos. Appl. Sci. Manuf. 2020, 134, 105898; https://doi.org/10.1016/j.compositesa.2020.105898.Search in Google Scholar

8. Gbaguidi, A., Namilae, S., Kim, D. Stochastic percolation model for the effect of nanotube agglomeration on the conductivity and piezoresistivity of hybrid nanocomposites. Comput. Mater. Sci. 2019, 166, 9–19; https://doi.org/10.1016/j.commatsci.2019.04.045.Search in Google Scholar

9. Yola, M. L. Development of novel nanocomposites based on graphene/graphene oxide and electrochemical sensor applications. Curr. Anal. Chem. 2019, 15, 159–165; https://doi.org/10.2174/1573411014666180320111246.Search in Google Scholar

10. Torrisi, L., Silipigni, L., Calcagno, L., Cutroneo, M., Torrisi, A. Carbon-based innovative materials for nuclear physics applications (CIMA), INFN project. Radiat. Eff. Defect Solid 2021, 176, 100–118; https://doi.org/10.1080/10420150.2021.1891062.Search in Google Scholar

11. Zeininger, L., He, M., Hobson, S. T., Swager, T. M. Resistive and capacitive γ-ray dosimeters based on triggered depolymerization in carbon nanotube composites. ACS Sens. 2018, 3, 976–983; https://doi.org/10.1021/acssensors.8b00108.Search in Google Scholar PubMed PubMed Central

12. Mosayebi, A., Malekie, S., Rahimi, A., Ziaie, F. Experimental study on polystyrene-MWCNT nanocomposite as a radiation dosimeter. Radiat. Phys. Chem. 2019, 164, 108362; https://doi.org/10.1016/j.radphyschem.2019.108362.Search in Google Scholar

13. Malekie, S., Ziaie, F. Study on a novel dosimeter based on polyethylene–carbon nanotube composite. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, 791, 1–5; https://doi.org/10.1016/j.nima.2015.04.031.Search in Google Scholar

14. Malekie, S., Ziaie, F., Esmaeli, A. Study on dosimetry characteristics of polymer–CNT nanocomposites: effect of polymer matrix. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2016, 816, 101–105; https://doi.org/10.1016/j.nima.2016.01.077.Search in Google Scholar

15. Rahimi, A., Ziaie, F., Sheikh, N., Malekie, S. Calorimetry system based on polystyrene/MWCNT nanocomposite for electron beam dosimetry: a new approach. Nanotechnol. Russia 2020, 15, 175–181; https://doi.org/10.1134/s1995078020020020.Search in Google Scholar

16. Kalakonda, P., Iannacchione, G. S., Daly, M., Georgiev, G. Y., Cabrera, Y., Judith, R., Cebe, P. Calorimetric study of nanocomposites of multiwalled carbon nanotubes and isotactic polypropylene polymer. J. Appl. Polym. Sci. 2013, 130, 587–594; https://doi.org/10.1002/app.39204.Search in Google Scholar

17. Park, C., Ounaies, Z., Watson, K. A., Pawlowski, K., Lowther, S. E., Connell, J. W., Siochi, E. J., Harrison, J. S., Clair, T. L. S. Polymer-single wall carbon nanotube composites for potential spacecraft applications. In MRS Online Proceedings Library Archive; Cambridge, Cambridge University Press, 2001, p. 706.10.1557/PROC-706-Z3.30.1Search in Google Scholar

18. Chen, S. Polymer Based Nanocomposites as Multifunctional Structure for Space Radiation Shielding: A Study of Nanomaterial Fabrications and Evaluations. uwspace.uwaterloo.ca, Waterloo, The University of Waterloo, 2018.Search in Google Scholar

19. Hosseini, M. A., Malekie, S., Kazemi, F. Experimental evaluation of gamma radiation shielding characteristics of polyvinyl alcohol/Tungsten oxide composite: a comparison study of micro and nano sizes of the fillers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2022, 1026, 166214; https://doi.org/10.1016/j.nima.2021.166214.Search in Google Scholar

20. Jiang, Q., Liao, X., Li, J., Chen, J., Wang, G., Yi, J., Yang, Q., Li, G. Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic. Compos. Appl. Sci. Manuf. 2019, 123, 310–319; https://doi.org/10.1016/j.compositesa.2019.05.017.Search in Google Scholar

21. Yang, H., Yu, Z., Wu, P., Zou, H., Liu, P. Electromagnetic interference shielding effectiveness of microcellular polyimide/in situ thermally reduced graphene oxide/carbon nanotubes nanocomposites. Appl. Surf. Sci. 2018, 434, 318–325; https://doi.org/10.1016/j.apsusc.2017.10.191.Search in Google Scholar

22. Zhang, C., Lv, Q., Liu, Y., Wang, C., Wang, Q., Wei, H., Liu, L., Li, J., Dong, H. Rational design and fabrication of lightweight porous polyimide composites containing polyaniline modified graphene oxide and multiwalled carbon nanotube hybrid fillers for heat-resistant electromagnetic interference shielding. Polymer 2021, 224, 123742; https://doi.org/10.1016/j.polymer.2021.123742.Search in Google Scholar

23. Wu, H., Sun, H., Han, F., Xie, P., Zhong, Y., Quan, B., Zhao, Y., Liu, C., Fan, R., Guo, Z. Negative permittivity behavior in flexible carbon nanofibers-polydimethylsiloxane films. Eng. Sci. 2022, 17, 113–120.10.30919/es8d576Search in Google Scholar

24. Wu, H., Zhong, Y., Tang, Y., Huang, Y., Liu, G., Sun, W., Xie, P., Pan, D., Liu, C., Guo, Z. Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and graphene. Adv. Compos. Hybrid. Mater. 2022, 5, 419–430; https://doi.org/10.1007/s42114-021-00378-y.Search in Google Scholar

25. Xie, P., Shi, Z., Feng, M., Sun, K., Liu, Y., Yan, K., Liu, C., Moussa, T. A., Huang, M., Meng, S., Liang, G., Hou, H., Fan, R., Guo, Z. Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv. Compos. Hybrid. Mater. 2022, 1–17; https://doi.org/10.1007/s42114-022-00479-2.Search in Google Scholar

26. Zhang, Z., Liu, M., Ibrahim, M. M., Wu, H., Wu, Y., Li, Y., Mersal, G. A., El Azab, I. H., El-Bahy, S. M., Huang, M., Jiang, Y., Liang, G., Xie, P., Liu, C. Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv. Compos. Hybrid. Mater. 2022, 1–13; https://doi.org/10.1007/s42114-022-00486-3.Search in Google Scholar

27. Qi, G., Liu, Y., Chen, L., Xie, P., Pan, D., Shi, Z., Quan, B., Zhong, Y., Liu, C., Fan, R. Lightweight Fe3C@ Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv. Compos. Hybrid. Mater. 2021, 4, 1226–1238; https://doi.org/10.1007/s42114-021-00368-0.Search in Google Scholar

28. Kausar, A. Overview on conducting polymer in energy storage and energy conversion system. J. Macromol. Sci. 2017, 54, 640–653; https://doi.org/10.1080/10601325.2017.1317210.Search in Google Scholar

29. Mei, L., Cui, X., Wei, J., Duan, Q., Li, Y. Metal phthalocyanine-based conjugated microporous polymer/carbon nanotube composites as flexible electrodes for supercapacitors. Dyes Pigments 2021, 190, 109299; https://doi.org/10.1016/j.dyepig.2021.109299.Search in Google Scholar

30. Moussa, M., El-Kady, M. F., Abdel-Azeim, S., Kaner, R. B., Majewski, P., Ma, J. Compact. flexible conducting polymer/graphene nanocomposites for supercapacitors of high volumetric energy density. Compos. Sci. Technol. 2018, 160, 50–59; https://doi.org/10.1016/j.compscitech.2018.02.033.Search in Google Scholar

31. Sagadevan, S., Shahid, M. M., Yiqiang, Z., Oh, W. C., Soga, T., Lett, J. A., Alshahateet, S. F., Fatimah, I., Waqar, A., Paiman, S. Functionalized graphene-based nanocomposites for smart optoelectronic applications. Nanotechnol. Rev. 2021, 10, 605–635; https://doi.org/10.1515/ntrev-2021-0043.Search in Google Scholar

32. Kausar, A. Potential of polymer/graphene nanocomposite in electronics. J. Nanosci. Nanotechnol. 2018, 6, 55–63.Search in Google Scholar

33. Wang, G., Wang, C., Zhang, F., Yu, X. Electrical percolation of nanoparticle-polymer composites. Comput. Mater. Sci. 2018, 150, 102–106; https://doi.org/10.1016/j.commatsci.2018.03.051.Search in Google Scholar

34. Nath, J., Sharma, K., Kumar, S., Kumar, V., Sehgal, R. Polymer/carbon nanocomposites for biomedical applications. In Polymeric and Natural Composites; Springer: Cham, 2022; pp. 109–150.10.1007/978-3-030-70266-3_4Search in Google Scholar

35. Mallakpour, S., Azadi, E., Hussain, C. M. Chitosan/carbon nanotube hybrids: recent progress and achievements for industrial applications. New J. Chem. 2021, 45, 3756–3777; https://doi.org/10.1039/d0nj06035f.Search in Google Scholar

36. Ponnamma, D., Sadasivuni, K. K. Graphene/polymer nanocomposites: role in electronics. In Graphene-Based Polymer Nanocomposites in Electronics; Springer: Switzerland, 2015; pp. 1–24.10.1007/978-3-319-13875-6_1Search in Google Scholar

37. Liu, B., Soares, P., Checkles, C., Zhao, Y., Yu, G. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Lett. 2013, 13, 3414–3419; https://doi.org/10.1021/nl401880v.Search in Google Scholar PubMed

38. Meer, S., Kausar, A., Iqbal, T. Trends in conducting polymer and hybrids of conducting polymer/carbon nanotube: a review. Polym. Plast. Technol. Eng. 2016, 55, 1416–1440; https://doi.org/10.1080/03602559.2016.1163601.Search in Google Scholar

39. Bayram, O., Igman, E., Guney, H., Demir, Z., Yurtcan, M. T., Cirak, C., Hasar, U. C., Simsek, O. Graphene/polyaniline nanocomposite as platinum-free counter electrode material for dye-sensitized solar cell: its fabrication and photovoltaic performance. J. Mater. Sci. Mater. Electron. 2020, 31, 10288–10297; https://doi.org/10.1007/s10854-020-03575-5.Search in Google Scholar

40. Mittal, V. Polymer-Graphene Nanocomposites; RSC Publishing: Cambridge, UK, 2012.10.1039/9781849736794Search in Google Scholar

41. Sadasivuni, K. K., Ponnamma, D., Kim, J., Thomas, S. Graphene-Based Polymer Nanocomposites in Electronics; Springer: Cham, 2015.10.1007/978-3-319-13875-6Search in Google Scholar

42. Sahraei, A. A., Ayati, M., Rodrigue, D., Baniassadi, M. A computational approach to evaluate the nonlinear and noisy DC electrical response in carbon nanotube/polymer nanocomposites near the percolation threshold. Comput. Mater. Sci. 2020, 173, 109439; https://doi.org/10.1016/j.commatsci.2019.109439.Search in Google Scholar

43. Du, M., Jing, H., Gao, Y., Su, H., Fang, H. Carbon nanomaterials enhanced cement-based composites: advances and challenges. Nanotechnol. Rev. 2020, 9, 115–135; https://doi.org/10.1515/ntrev-2020-0011.Search in Google Scholar

44. Thota, S. P., Bag, P. P., Vadlani, P. V., Belliraj, S. K. Plant biomass derived multidimensional nanostructured materials: a green alternative for energy storage. Eng. Sci. 2022, 18, 31–58; https://doi.org/10.30919/es8d664.Search in Google Scholar

45. Kumari, M., Chaudhary, G. R., Chaudhary, S., Umar, A. Rapid analysis of trace sulphite ion using fluorescent carbon dots produced from single use plastic cups. Eng. Sci. 2021, 17, 101–112; https://doi.org/10.30919/es8d556.Search in Google Scholar

46. Vijeata, A., Chaudhary, G. R., Umar, A., Chaudhary, S. Distinctive solvatochromic response of fluorescent carbon dots derived from different components of Aegle Marmelos plant. Eng. Sci. 2021, 15, 197–209; https://doi.org/10.30919/es8e512.Search in Google Scholar

47. Sun, Z., Zhang, Y., Guo, S., Shi, J., Shi, C., Qu, K., Qi, H., Huang, Z., Murugadoss, V., Huang, M., Guo, Z. Confining FeNi nanoparticles in biomass-derived carbon for effectively photo-Fenton catalytic reaction for polluted water treatment. Adv. Compos. Hybrid. Mater. 2022, 1–16; https://doi.org/10.1007/s42114-022-00477-4.Search in Google Scholar

48. Wang, P., Song, T., Abo-Dief, H. M., Song, J., Alanazi, A. K., Fan, B., Huang, M., Lin, Z., Altalhi, A. A., Gao, S., Yang, L., Liu, J., Feng, S., Cao, T. Effect of carbon nanotubes on the interface evolution and dielectric properties of polylactic acid/ethylene–vinyl acetate copolymer nanocomposites. Adv. Compos. Hybrid. Mater. 2022, 1–11; https://doi.org/10.1007/s42114-022-00489-0.Search in Google Scholar

49. Gao, S., Zhao, X., Fu, Q., Zhang, T., Zhu, J., Hou, F., Ni, J., Zhu, C., Li, T., Wang, Y., Murugadoss, V., Mersal, A. M.Gaber, Ibrahim, M.Mohamed, El-Bahy, M.Zeinhom, Huang, M., Guo, Z. Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J. Mater. Sci. Technol. 2022, 126, 152–160; https://doi.org/10.1016/j.jmst.2022.03.012.Search in Google Scholar

50. Mittal, V. Polymer Nanotube Nanocomposites Synthesis, Properties, and Applications; Scrivener Publishing: Beverly, Canada, 2014.10.1002/9781118945964Search in Google Scholar

51. Khodabakhshi, S., Fulvio, P. F., Sousaraei, A., Kiani, S., Niu, Y., Palmer, R. E., Kuo, W. C., Rudd, J., Barron, A. R., Andreoli, E. Oxidative synthesis of yellow photoluminescent carbon nanoribbons from carbon black. Carbon 2021, 183, 495–503; https://doi.org/10.1016/j.carbon.2021.07.032.Search in Google Scholar

52. Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286; https://doi.org/10.1038/nature04969.Search in Google Scholar PubMed

53. Aldosari, H. In the effect of graphene oxide dispersion on structure-property relationships in graphene-based polymer nanocomposites. J. Nano Res. 2020, 97–121; https://doi.org/10.4028/www.scientific.net/jnanor.65.97.Search in Google Scholar

54. Long, G., Tang, C., Wong, K. W., Man, C., Fan, M., Lau, W. M., Xu, T., Wang, B. Resolving the dilemma of gaining conductivity but losing environmental friendliness in producing polystyrene/graphene composites via optimizing the matrix-filler structure. Green Chem. 2013, 15, 821–828; https://doi.org/10.1039/c3gc37042a.Search in Google Scholar

55. Mittal, V. Characterization Techniques for Polymer Nanocomposites; Wiley-VCH Verlag & Co: Weinheim, Germany, 2012.10.1002/9783527654505Search in Google Scholar

56. Belashi, A. A Dissertation Entitled Percolation Modeling in Polymer Nanocomposites; The University of Toledo: Toledo, 2011.Search in Google Scholar

57. Malekie, S., Ziaie, F. A two-dimensional simulation to predict the electrical behavior of carbon nanotube/polymer composites. J. Polym. Eng. 2017, 37, 205–210; https://doi.org/10.1515/polyeng-2015-0511.Search in Google Scholar

58. Zare, Y., Rhee, K. Y. Advanced model for conductivity estimation of graphene-based samples considering interphase effect, tunneling mechanism, and filler wettability. J. Ind. Eng. Chem. 2021, 108, 81–87; https://doi.org/10.1016/j.jiec.2021.12.028.Search in Google Scholar

59. Marsden, A. J., Papageorgiou, D., Valles, C., Liscio, A., Palermo, V., Bissett, M., Young, R., Kinloch, I. Electrical percolation in graphene–polymer composites. 2D Mater. 2018, 5, 032003; https://doi.org/10.1088/2053-1583/aac055.Search in Google Scholar

60. Lu, X., Yvonnet, J., Detrez, F., Bai, J. Low electrical percolation thresholds and nonlinear effects in graphene-reinforced nanocomposites: a numerical analysis. J. Compos. Mater. 2018, 52, 2767–2775; https://doi.org/10.1177/0021998317753888.Search in Google Scholar

61. Ayesh, A. S., Ibrahim, S., Abu-Abdeen, M. Low percolation threshold of functionalized single-walled carbon nanotubes—polycarbonate nanocomposites. J. Reinforc. Plast. Compos. 2012, 31, 1113–1123; https://doi.org/10.1177/0731684412453777.Search in Google Scholar

62. McLachlan, D. S., Sauti, G. The AC and DC conductivity of nanocomposites. J. Nanomater. 2007, 2007, 030389.10.1155/2007/30389Search in Google Scholar

63. Du, J., Cheng, H. M. The fabrication, properties, and uses of graphene/polymer composites. Macromol. Chem. Phys. 2012, 213, 1060–1077; https://doi.org/10.1002/macp.201200029.Search in Google Scholar

64. Balberg, I., Anderson, C. H., Alexander, S., Wagner, N. Excluded volume and its relation to the onset of percolation. Phys. Rev. B 1984, 30, 3933–3943; https://doi.org/10.1103/physrevb.30.3933.Search in Google Scholar

65. Han, Z., Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 2011, 36, 914–944; https://doi.org/10.1016/j.progpolymsci.2010.11.004.Search in Google Scholar

66. Maiti, S., Suin, S., Shrivastava, N. K., Khatua, B. B. Low percolation threshold in melt-blended PC/MWCNT nanocomposites in the presence of styrene acrylonitrile (SAN) copolymer: preparation and characterizations. Synth. Met. 2013, 165, 40–50; https://doi.org/10.1016/j.synthmet.2013.01.007.Search in Google Scholar

67. Messiry, M. E. Theoretical analysis of natural fiber volume fraction of reinforced composites. Alex. Eng. J. 2013, 52, 301–306; https://doi.org/10.1016/j.aej.2013.01.006.Search in Google Scholar

68. Mazaheri, M., Payandehpeyman, J., Khamehchi, M. A developed theoretical model for effective electrical conductivity and percolation behavior of polymer-graphene nanocomposites with various exfoliated filleted nanoplatelets. Carbon 2020, 169, 264–275; https://doi.org/10.1016/j.carbon.2020.07.059.Search in Google Scholar

69. Lu, X., Yvonnet, J., Detrez, F., Bai, J. Numerical analysis of electric conductivity and percolation threshold of graphene-reinforced nanocomposites by finite element method. In 13e colloque national en calcul des structures; Université Paris-Saclay: Paris, 2017.Search in Google Scholar

70. Jebbor, N., Bri, S. Effective permittivity of periodic composite materials: numerical modeling by the finite element method. J. Electrost. 2012, 70, 393–399; https://doi.org/10.1016/j.elstat.2012.05.007.Search in Google Scholar

71. Myroshnychenko, V., Brosseau, C. Finite-element modeling method for the prediction of the complex effective permittivity of two-phase random statistically isotropic heterostructures. J. Appl. Phys. 2005, 97, 044101-1–044101-14; https://doi.org/10.1063/1.1835544.Search in Google Scholar

72. Rapp, B. E. Microfluidics: Modeling, Mechanics and Mathematics; William Andrew: Oxford, 2016.10.1016/B978-1-4557-3141-1.50009-5Search in Google Scholar

73. Reddy, J. An introduction to the Finite Element Method, 3rd ed.; MC Graw-Hill Series in Mechanical Engineering: New York, 2005.Search in Google Scholar

74. Johnson, C. Numerical Solution of Partial Differential Equations by the Finite Element Method; Cambridge University Press: Cambridge, 1987.Search in Google Scholar

75. Ranjbarzadeh, R., Karimipour, A., Afrand, M., Isfahani, A. H. M., Shirneshan, A. Empirical analysis of heat transfer and friction factor of water/graphene oxide nanofluid flow in turbulent regime through an isothermal pipe. Appl. Therm. Eng. 2017, 126, 538–547; https://doi.org/10.1016/j.applthermaleng.2017.07.189.Search in Google Scholar

76. Penkov, O. Tribology of Graphene: Simulation Methods, Preparation Methods, and Their Applications; Elsevier: Amsterdam, The Netherlands, 2020.Search in Google Scholar

77. Hong, X., Yu, W., Chung, D. Electric permittivity of reduced graphite oxide. Carbon 2017, 111, 182–190; https://doi.org/10.1016/j.carbon.2016.09.071.Search in Google Scholar

78. Ju, S. A., Kim, K., Kim, J. H., Lee, S. S. Graphene-wrapped hybrid spheres of electrical conductivity. ACS Appl. Mater. Interfaces 2011, 3, 2904–2911; https://doi.org/10.1021/am200056t.Search in Google Scholar PubMed

79. Du, X., Zhen, K., Liu, F. Graphene reinforced magnesium matrix composites by hot pressed sintering. Digest J. Nanomater. Biostructures 2018, 13, 827–833.Search in Google Scholar

80. Fang, J., Vandenberghe, W. G., Fischetti, M. V. Microscopic dielectric permittivities of graphene nanoribbons and graphene. Phys. Rev. B 2016, 94, 045318; https://doi.org/10.1103/physrevb.94.045318.Search in Google Scholar

81. Callister, W. D. Fundamentals of Materials Science and Engineering, 5th ed.; John Wiley & Sons, Inc., The University of Utah: Utah, 2001.Search in Google Scholar

82. Xia, X., Wang, Y., Zhong, Z., Weng, G. J. A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon 2017, 111, 221–230; https://doi.org/10.1016/j.carbon.2016.09.078.Search in Google Scholar

83. Drobny, J. G. Polymers for Electricity and Electronics: Materials, Properties, and Applications; John Wiley & Sons: Hoboken, 2012.10.1002/9781118160121Search in Google Scholar

84. Chanda, A., Sinha, S. K., Datla, N. V. Electrical conductivity of random and aligned nanocomposites: theoretical models and experimental validation. Compos. Appl. Sci. Manuf. 2021, 149, 106543; https://doi.org/10.1016/j.compositesa.2021.106543.Search in Google Scholar

85. Saavedra, M. S. Novel Organic Based Nano-Composite Detector Films: The Making and Testing of CNT Doped Poly(acrylate) Thin Films on Ceramic Chip Substrates; University of Surrey: Guildford, Surrey, 2005.Search in Google Scholar

86. Zhou, T. N., Qi, X. D., Fu, Q. The preparation of the poly(vinyl alcohol)/graphene nanocomposites with low percolation threshold and high electrical conductivity by using the large-area reduced graphene oxide sheets. Express Polym. Lett. 2013, 7, 747–755; https://doi.org/10.3144/expresspolymlett.2013.72.Search in Google Scholar

87. Gao, C., Zhang, S., Wang, F., Wen, B., Han, C., Ding, Y., Yang, M. Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties. ACS Appl. Mater. Interfaces 2014, 6, 12252–12260; https://doi.org/10.1021/am501843s.Search in Google Scholar PubMed

88. He, L., Tjong, S. C. Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution. Nanoscale Res. Lett. 2013, 8, 1–7; https://doi.org/10.1186/1556-276x-8-132.Search in Google Scholar

89. Kim, J. S., Hong, S., Park, D. W., Shim, S. E. Water-borne graphene-derived conductive SBR prepared by latex heterocoagulation. Macromol. Res. 2010, 18, 558–565; https://doi.org/10.1007/s13233-010-0603-0.Search in Google Scholar

90. Wu, S., Ladani, R. B., Zhang, J., Bafekrpour, E., Ghorbani, K., Mouritz, A. P., Kinloch, A. J., Wang, C. H. Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 2015, 94, 607–618; https://doi.org/10.1016/j.carbon.2015.07.026.Search in Google Scholar

91. Vadukumpully, S., Paul, J., Mahanta, N., Valiyaveettil, S. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 2011, 49, 198–205; https://doi.org/10.1016/j.carbon.2010.09.004.Search in Google Scholar

92. Xu, C., Gao, J., Xiu, H., Li, X., Zhang, J., Luo, F., Zhang, Q., Chen, F., Fu, Q. Can in situ thermal reduction be a green and efficient way in the fabrication of electrically conductive polymer/reduced graphene oxide nanocomposites? Compos. Appl. Sci. Manuf. 2013, 53, 24–33; https://doi.org/10.1016/j.compositesa.2013.06.007.Search in Google Scholar

93. Yoonessi, M., Gaier, J. R. Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano 2010, 4, 7211–7220; https://doi.org/10.1021/nn1019626.Search in Google Scholar PubMed

94. Du, J., Zhao, L., Zeng, Y., Zhang, L., Li, F., Liu, P., Liu, C. Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 2011, 49, 1094–1100; https://doi.org/10.1016/j.carbon.2010.11.013.Search in Google Scholar

95. Pang, H., Chen, T., Zhang, G., Zeng, B., Li, Z. M. An electrically conducting polymer/graphene composite with a very low percolation threshold. Mater. Lett. 2010, 64, 2226–2229; https://doi.org/10.1016/j.matlet.2010.07.001.Search in Google Scholar

96. Barrau, S., Demont, P., Peigney, A., Laurent, C., Lacabanne, C. DC and AC conductivity of carbon nanotubes−polyepoxy composites. Macromolecules 2003, 36, 5187–5194; https://doi.org/10.1021/ma021263b.Search in Google Scholar

97. Apsley, N., Hughes, H. P. Temperature- and field-dependence of hopping conduction in disordered systems. Philos. Mag. A 1974, 3, 963; https://doi.org/10.1080/14786437408207250.Search in Google Scholar

98. Potts, J. R., Dreyer, D. R., Bielawski, C. W., Ruoff, R. S. Graphene-based polymer nanocomposites. Polymer 2011, 52, 5–25; https://doi.org/10.1016/j.polymer.2010.11.042.Search in Google Scholar

99. Yan, H., Bergren, A. J., McCreery, R., Della Rocca, M. L., Martin, P., Lafarge, P., Lacroix, J. C. Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 5326–5330; https://doi.org/10.1073/pnas.1221643110.Search in Google Scholar PubMed PubMed Central

100. Oskouyi, A. B., Sundararaj, U., Mertiny, P. Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets. Materials 2014, 7, 2501–2521; https://doi.org/10.3390/ma7042501.Search in Google Scholar PubMed PubMed Central

101. Payandehpeyman, J., Mazaheri, M., Khamehchi, M. Prediction of electrical conductivity of polymer-graphene nanocomposites by developing an analytical model considering interphase, tunneling and geometry effects. Compos. Commun. 2020, 21, 100364; https://doi.org/10.1016/j.coco.2020.100364.Search in Google Scholar

102. Knite, M., Teteris, V., Polyakov, B., Erts, D. Electric and elastic properties of conductive polymeric nanocomposites on macro-and nanoscales. Mater. Sci. Eng. C 2002, 19, 15–19; https://doi.org/10.1016/s0928-4931(01)00410-6.Search in Google Scholar

103. Kulakov, V., Aniskevich, A., Ivanov, S., Poltimae, T., Starkova, O. Effective electrical conductivity of carbon nanotube–epoxy nanocomposites. J. Compos. Mater. 2017, 51, 2979–2988; https://doi.org/10.1177/0021998316678304.Search in Google Scholar

104. Thongruang, W., Spontak, R. J., Balik, C. M. Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber. Polymer 2002, 43, 2279–2286; https://doi.org/10.1016/s0032-3861(02)00043-5.Search in Google Scholar

105. Zare, Y., Rhee, K. Y. Simulation of percolation threshold, tunneling distance, and conductivity for carbon nanotube (CNT)-reinforced nanocomposites assuming effective CNT concentration. Polymers 2020, 12, 114; https://doi.org/10.3390/polym12010114.Search in Google Scholar PubMed PubMed Central

106. Fedirko, V. Electron tunneling from graphene. Univers. J. Phys. Appl. 2014, 2, 263–267; https://doi.org/10.13189/ujpa.2014.020601.Search in Google Scholar

Received: 2022-05-07
Accepted: 2022-06-27
Published Online: 2022-08-08
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2022-0101/html
Scroll to top button