Investigation of conductivity, SEM, XRD studies of Mg2+ ion based TiO2 nanocomposite PVDF-HFP polymer electrolyte and application in a dye sensitized solar cell
-
Mallikarjun A.
, Sreekanth T.
Abstract
The potential effect of nano TiO2 in poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) based polymer electrolyte and their application in a dye sensitized solar cell have been investigated. The solution casting process was used for fabrication of nano TiO2 loaded in Mg 2+ ion based PVDF-HFP solid polymer electrolyte (SPE), and characterized using conductivity, scanning electron microscopy (SEM), X-ray diffraction (XRD) and photovoltaic studies. XRD investigations reveal the broadening of specific peaks, which shows the occurrence of α, β and γ polymorphous phase transitions that commence the amorphous character and ion mobility. The SEM pictures revealed an interconnecting network of micro-porous nature, and an average diameter of the pores of ∼0.38 µm was obtained by using Gaussian curve fitting. Ion transport is facilitated by the high concentration of pores, which is responsible for the efficient absorption of a significant amount of electrolyte. The photovoltaic characteristics of dye sensitized solar cell (DSSC) estimated efficiency (η) is 9.9999%, and the fill factor is 0.84. Furthermore, the stability performance of the nanocomposite polymer electrolyte was improved and sufficient for use over an extended length of time, suggesting potential applications as a separator in solid state ionic conductors.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Wen, T. C., Tseng, H. S., Cheng, T. T. Composite electrolytes comprising polytetramethylene/polypropylene glycol-based waterborne polyurethanes and polyethylene oxide via a mixture design approach. Ind. Eng. Chem. Res. 2000, 39, 72–78; https://doi.org/10.1021/ie990373c.Search in Google Scholar
2. Fenton, D. E., Parker, J. M., Wright, P. V. Complexes of alkali metal ions with poly (ethylene oxide). Polymer 1973, 14, 589; https://doi.org/10.1016/0032-3861(73)90146-8.Search in Google Scholar
3. Zhang, B., Zhang, Y., Zhang, N., Liu, J., Cong, L., Liu, J., Sun, L., Mauger, A., Julien, C. M., Xie, H., Pan, X. Synthesis and interface stability of polystyrene-poly (ethylene glycol)-polystyrene triblock copolymer as solid-state electrolyte for lithium-metal batteries. J. Power Sources. 2019, 428, 93–104; https://doi.org/10.1016/j.jpowsour.2019.04.033.Search in Google Scholar
4. Gao, H., Xue, L., Xin, S., Goodenough, J. B. A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angew. Chem. 2018, 57, 5449–5453; https://doi.org/10.1002/anie.201802248.Search in Google Scholar
5. Shen, X., Xu, W., Xu, J., Liang, G., Yang, H., Yao, M. Quasi-solid-state dye-sensitized solar cells based on gel electrolytes containing different alkali metal iodide salts. Solid State Ionics. 2008, 179, 2027–2030; https://doi.org/10.1016/j.ssi.2008.06.027.Search in Google Scholar
6. Huang, J., Liao, Y., Li, G., Xu, N., Xu, M., Li, W. Cyclic stability improvement in a blended P (VdF-HFP)/P (BMA-AN-St)-based gel electrolyte by electro spinning for high voltage lithium ion batteries. Electrochim. Acta. 2019, 299, 45–54; https://doi.org/10.1016/j.electacta.2018.12.168.Search in Google Scholar
7. Panero, S., Scrosati, B. Gelification of liquid–polymer systems: a valid approach for the development of various types of polymer electrolyte membranes. J. Power Sources. 2000, 90, 13–19; https://doi.org/10.1016/S0378-7753(00)00438-9.Search in Google Scholar
8. Gonçalves, R., Miranda, D., Almeida, A. M., Silva, M. M., Meseguer-Dueñas, J. M., Ribelles, J. G., Lanceros-Méndez, S., Costa, C. M. SPEs based on lithium bis (trifluoromethanesulfonyl) imide/poly (vinylidene fluoride-co-hexafluoropropylene) for safer rechargeable lithium-ion batteries. Sustain. Mater. Technol. 2019, 21, e00104; https://doi.org/10.1016/j.susmat.2019.e00104.Search in Google Scholar
9. Pitawala, H. M. J. C., Dissanayake, M. A. K. L., Seneviratne, V. A. Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the SPE (PEO)9LiTf. Solid State Ionics. 2007, 178, 885–888; https://doi.org/10.1016/j.ssi.2007.04.008.Search in Google Scholar
10. Zhang, H. H., Maitra, P., Wunder, S. L. Preparation and characterization of composite electrolytes based on PEO (375)-grafted fumed silica. Solid State Ionics 2008, 178, 1975–1983; https://doi.org/10.1016/j.ssi.2007.11.021.Search in Google Scholar
11. Song, Y., Yang, L., Li, J., Zhang, M., Wang, Y., Li, S., Chen, S., Yang, K., Xu, K., Pan, F. Synergistic dissociation-and-trapping effect to promote Li-ion conduction in polymer electrolytes via oxygen vacancies. Small. 2021, 17, 2102039; https://doi.org/10.1002/smll.202102039.Search in Google Scholar PubMed
12. Nan, C. W., Fan, L., Lin, Y., Cai, Q. Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys. Rev. Lett. 2003, 91, 266104; https://doi.org/10.1103/PhysRevLett.91.266104.Search in Google Scholar PubMed
13. Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Sanz, Y. E., Lagaron, J. M., Miesbauer, O., Bianchin, A., Hankin, S., Bölz, U., Perez, G., Jesdinszki, M., Lindner, M., Scheuerer, Z., Castello, S., Schmid, M. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials. 2017, 7, 74; https://doi.org/10.3390/nano7040074.Search in Google Scholar PubMed PubMed Central
14. Bitinis, N., Hernández, M., Verdejo, R., Kenny, J. M., Lopez-Manchado, M. A. Recent advances in clay/polymer nanocomposites. Adv. Mater. 2011, 23, 5229–5236; https://doi.org/10.1002/adma.201101948.Search in Google Scholar PubMed
15. Huo, Z., Dai, S., Wang, K., Kong, F., Zhang, C., Pan, X., Fang, X. Nanocomposite gel electrolyte with large enhanced charge transport properties of an I3−/I− redox couple for quasi-solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cell. 2007, 91, 1959–1965; https://doi.org/10.1016/j.solmat.2007.08.003.Search in Google Scholar
16. Zarca, R., Campos, A. C. C., Ortiz, A., Gorri, D., Ortiz, I. Comprehensive study on PVDF-HFP/BMImBF4/AgBF4 membranes for propylene purification. J. Membr. Sci. 2019, 572, 255–261; https://doi.org/10.1016/j.memsci.2018.11.023.Search in Google Scholar
17. Park, B., Schaefer, J. L. Polymer electrolytes for magnesium batteries: forging away from analogs of lithium polymer electrolytes and towards the rechargeable magnesium metal polymer battery. J. Electrochem. Soc. 2020, 167, 070545; https://doi.org/10.1149/1945-7111/ab7c71.Search in Google Scholar
18. Saha, P., Kanchan Datta, M., Velikokhatnyi, O. I., Manivannan, A., Alman, D., Prashant, N., Kumta, P. N. Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 2014, 66, 1–86; https://doi.org/10.1016/j.pmatsci.2014.04.001.Search in Google Scholar
19. Yoo, H. D., Shterenberg, I., Gofer, Y., Gershinsky, G., Pour, N., Aurbach, D. Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 2013, 6, 2265–2279; https://doi.org/10.1039/C3EE40871J.Search in Google Scholar
20. Noor, M. M., Buraidah, M. H., Yusuf, S. N. F., Careem, M. A., Majid, S. R., Arof, A. K. Performance of dye-sensitized solar cells with (PVDF-HFP)-KI-EC-PC electrolyte and different dye materials. Int. J. Photoenergy 2011, 2011, 1–5; https://doi.org/10.1155/2011/960487.Search in Google Scholar
21. Priya, A. R. S., Subramania, A., Jung, Y. S., Kim, K. J. High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF−HFP membrane electrolyte. Langmuir. 2008, 24, 9816–9819; https://doi.org/10.1021/la801375s.Search in Google Scholar
22. Verma, P., Singh, A., Maji, T. K. Photo-modulated wide-spectrum chromism in Eu3+ and Eu3+/Tb3+ photochromic coordination polymer gels: application in decoding secret information. Chem. Sci. 2021, 12, 2674–2682; https://doi.org/10.1039/D0SC05721E.Search in Google Scholar
23. Shalini, S., Balasundaraprabhu, R., Kumar, T. S., Prabavathy, N., Senthilarasu, S., Prasanna, S. Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review. Int. J. Energy Res. 2016, 40, 1303–1320; https://doi.org/10.1002/er.3538.Search in Google Scholar
24. Vinoth, S., Kanimozhi, G., Kumar, H., Srinadhu, E. S., Satyanarayana, N. High conducting nanocomposite electrospun PVDF-HFP/TiO2 quasi-solid electrolyte for dye-sensitized solar cell. J. Mater. Sci. Mater. Electron. 2019, 30, 1199–1213; https://doi.org/10.1007/s10854-018-0388-z.Search in Google Scholar
25. Prabakaran, K., Mohanty, S., Nayak, S. K. Improved electrochemical and photovoltaic performance of dye sensitized solar cells based on PEO/PVDF–HFP/silane modified TiO2 electrolytes and MWCNT/Nafion® counter electrode. RSC Adv. 2015, 5, 40491–40504; https://doi.org/10.1039/C5RA01770J.Search in Google Scholar
26. Issa, A. A., Al-Maadeed, M., Luyt, A. S., Mrlik, M., Hassan, M. K. Investigation of the physico-mechanical properties of electro spun PVDF/cellulose (nano) fibers. J. Appl. Polym. Sci. 2016, 133, 43594; https://doi.org/10.1002/app.43594.Search in Google Scholar
27. Calvo, J. I., Hernandez, A., Caruana, G., Martınez, L. Pore size distributions in microporous membranes: I. surface study of track-etched filters by image analysis. J. Colloid Interface Sci. 1995, 175, 138–150; https://doi.org/10.1006/jcis.1995.1439.Search in Google Scholar
28. Martinez-Villa, F., Arribas, J. I., Tejerina, F. Quantitative microscopic study of surface characteristics of track-etched membranes. J. Membr. Sci. 1988, 36, 19–30; https://doi.org/10.1016/0376-7388(88)80003-6.Search in Google Scholar
29. Manuputty, M. Y., Dreyer, J. A., Sheng, Y., Bringley, E. J., Botero, M. L., Akroyd, J., Kraft, M. Polymorphism of nanocrystalline TiO2 prepared in a stagnation flame: formation of the TiO2- II phase. Chem. Sci. 2019, 10, 1342–1350; https://doi.org/10.1039/C8SC02969E.Search in Google Scholar PubMed PubMed Central
30. Parangusan, H., Ponnamma, D., Al-Maadeed, M. A. A. Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Sci. Rep. 2018, 8, 1–11; https://doi.org/10.1038/s41598-017-19082-3.Search in Google Scholar PubMed PubMed Central
31. Zeid, E. F. A., Ibrahem, I. A., Ali, A. M., Mohamed, W. A. The effect of CdO content on the crystal structure, surface morphology, optical properties and photocatalytic efficiency of p-NiO/n-CdO nanocomposite. Results Phys. 2019, 12, 562–570; https://doi.org/10.1016/j.rinp.2018.12.009.Search in Google Scholar
32. Kamarudin, K. H., Isa, M. I. N. Structural and DC ionic conductivity studies of carboxy methylcellulose doped with ammonium nitrate as SPEs. Int. J. Phys. Sci. 2013, 8, 1581–1587; https://doi.org/10.5897/IJPS2013.3962(36).Search in Google Scholar
33. Saikia, D., Han, C. C., Chen-Yang, Y. W. Influence of polymer concentration and dyes on photovoltaic performance of dye-sensitized solar cell with P (VdF-HFP)-based gel polymer electrolyte. J. Power Sources. 2008, 185, 570–576; https://doi.org/10.1016/j.jpowsour.2008.06.063.Search in Google Scholar
34. Funaki, T., Funakoshi, H., Kitao, O., Onozawa-Komatsuzaki, N., Kasuga, K., Sayama, K., Sugihara, H. Cyclometalated ruthenium (II) complexes as near-IR sensitizers for high efficiency dye-sensitized solar cells. Angew. Chem. Int. Ed. 2012, 51, 7528–7531; https://doi.org/10.1002/anie.201108738.Search in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Thermodynamic behavior and crystal structure of polypropylene treated with supercritical carbon dioxide
- Investigation of conductivity, SEM, XRD studies of Mg2+ ion based TiO2 nanocomposite PVDF-HFP polymer electrolyte and application in a dye sensitized solar cell
- Computational prediction of electrical percolation threshold in polymer/graphene-based nanocomposites with finite element method
- Influence mechanisms of 2-amino-1,3,5-triazine-4,6-dithiol coating on adhesion properties of polybutylene terephthalate/aluminum interface in nano-injection molding
- Effects of enzyme-assisted ultrasonic treatment to the properties of nanofibrils isolated from wheat straw
- Preparation and Assembly
- Solution blow spinning polysulfone-Aliquat 336 nanofibers: synthesis, characterization, and application for the extraction and preconcentration of losartan from aqueous solutions
- Novel alginate immobilized TiO2 reusable functional hydrogel beads with high photocatalytic removal of dye pollutions
- Engineering and Processing
- Effects of gas-assisted technology on polymer micro coextrusion
- Influence of crystallinity on wear behavior of ultrahigh molecular weight polyethylene and the wear mechanism
- Identification of tensile behaviour of polylactic acid parts manufactured by fused deposition modelling under heat-treated conditions using nonlinear autoregressive with exogenous and transfer function models
Articles in the same Issue
- Frontmatter
- Material Properties
- Thermodynamic behavior and crystal structure of polypropylene treated with supercritical carbon dioxide
- Investigation of conductivity, SEM, XRD studies of Mg2+ ion based TiO2 nanocomposite PVDF-HFP polymer electrolyte and application in a dye sensitized solar cell
- Computational prediction of electrical percolation threshold in polymer/graphene-based nanocomposites with finite element method
- Influence mechanisms of 2-amino-1,3,5-triazine-4,6-dithiol coating on adhesion properties of polybutylene terephthalate/aluminum interface in nano-injection molding
- Effects of enzyme-assisted ultrasonic treatment to the properties of nanofibrils isolated from wheat straw
- Preparation and Assembly
- Solution blow spinning polysulfone-Aliquat 336 nanofibers: synthesis, characterization, and application for the extraction and preconcentration of losartan from aqueous solutions
- Novel alginate immobilized TiO2 reusable functional hydrogel beads with high photocatalytic removal of dye pollutions
- Engineering and Processing
- Effects of gas-assisted technology on polymer micro coextrusion
- Influence of crystallinity on wear behavior of ultrahigh molecular weight polyethylene and the wear mechanism
- Identification of tensile behaviour of polylactic acid parts manufactured by fused deposition modelling under heat-treated conditions using nonlinear autoregressive with exogenous and transfer function models