Abstract
Controlling temperature and pressure during the supercritical carbon dioxide (scCO2) process can change the mount of CO2 entered in polypropylene (PP) phase, thereby changing the mechanical properties of materials. The effect of scCO2 treatment on the crystallization behavior is different in the semi-molten and molten states. This study investigates the PP treated with scCO2 near the melting point and at various pressures, and explores the effects of temperature and pressure on the crystal structure, lamellar structure, and thermodynamic properties of PP. The results show that at a melting temperature of 165 °C, scCO2 can enhances the ability of PP molecules to makes the PP crystal region more regular, and forms larger microcrystals and lamellae. Additionally, increasing the pressure can make more CO2 enter the PP crystal region and further improve the regularity of the crystal. At a semi-melting temperature of 155 °C, scCO2 is primarily in the amorphous region because it is difficult to enter the PP crystal region. Even if increasing the pressure, it has little effect on the crystal size and lamellar thickness of PP. The research has significant implications for developing and utilizing scCO2 to remove ash from materials.
Funding source: Climbing scholar
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the Liaoning Pandeng Scholar program. Synchrotron Radiation WAXD characterizations were performed at beamline 1W2A of the Beijing Synchrotron Radiation Facility (BSRF). The authors are grateful for the assistance of the beamline scientists at BSRF, especially Guang Mo, Synchrotron Radiation WAXD. SAXS characterizations were performed at beamline BL16B1 of the Shanghai Synchrotron Radiation Facility (SSRF).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Chang, Y. Z., Shi, W. H., Han, G. Y., Song, H., Hou, W. J. Fabrication on the flexible supercapacitor based on the polypyrrole deposited on polyethylene/polypropylene non-woven film. Russ. J. Electrochem. 2020, 56, 947–958; https://doi.org/10.1134/s1023193520060038.Suche in Google Scholar
2. Salem, S., Fraňa, K., Nová, I. Design of acoustic energy harvesting unit using piezo-electric diaphragm. Trans Tech. Publ. 2020, 683, 109–115.10.4028/www.scientific.net/MSF.986.109Suche in Google Scholar
3. Wei, N., Ruan, L., Zeng, W., Liang, D., Xu, C., Huang, L., Zhao, J. Compressible supercapacitor with residual stress effect for sensitive elastic-electrochemical stress sensor. ACS Appl. Mater. Interfaces 2018, 10, 38057–38065; https://doi.org/10.1021/acsami.8b12745.Suche in Google Scholar PubMed
4. Henington, P., Fung, C. P., Li, K. W., Lee, C. Electroplating Apparatus: US, 2001.Suche in Google Scholar
5. Sarbu, T., Styranec, T., Beckman, E. J. Non-fluorous polymers with very high solubility in supercritical CO2 down to low pressures. Nature 2000, 405, 165–168.10.1038/35012040Suche in Google Scholar PubMed
6. Taki, K. Experimental and numerical studies on the effects of pressure release rate on number density of bubbles and bubble growth in a polymeric foaming process. Chem. Eng. Sci. 2008, 63, 3643–3653; https://doi.org/10.1016/j.ces.2008.04.037.Suche in Google Scholar
7. Wong, A., Guo, Y., Park, C. B., Zhou, N. Q. Isothermal crystallization-induced foaming of polypropylene under high pressure carbon dioxide. In Society of Plastics Engineers Annual Technical Conference (SPE ANTEC), 2012.Suche in Google Scholar
8. Picchioni, F. Supercritical carbon dioxide and polymers: an interplay of science and technology. Polym. Int. 2014, 63, 1394–1399; https://doi.org/10.1002/pi.4722.Suche in Google Scholar
9. Kelly, C. A., Harrison, K. L., Leeke, G. A., Jenkins, M. J. Detection of melting point depression and crystallization of polycaprolactone (PCL) in scCO2 by infrared spectroscopy. Polym. J. 2013, 45, 188–192; https://doi.org/10.1038/pj.2012.113.Suche in Google Scholar
10. Amaral, P., Garcia, D., Cardoso, M., Mendes, M., Coelho, M. A., Pessoa, F. Enzymatic reactions in near critical CO2: the effect of pressure on phenol removal by tyrosinase. Int. J. Mol. Sci. 2009, 10, 5217–5223; https://doi.org/10.3390/ijms10125217.Suche in Google Scholar PubMed PubMed Central
11. Yuan, Q., Awate, S., Misra, R. Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. Eur. Polym. J. 2006, 42, 1994–2003; https://doi.org/10.1016/j.eurpolymj.2006.03.012.Suche in Google Scholar
12. Schönherr, H., Waymouth, R. M., Frank, C. W. Nucleation and crystallization of low-crystallinity polypropylene followed in situ by hot stage atomic force microscopy. Macromolecules 2003, 36, 2412–2418; https://doi.org/10.1021/ma0208335.Suche in Google Scholar
13. Cho, K., Li, F., Choi, J. Crystallization and melting behavior of polypropylene and maleated polypropylene blends. Polymer 1999, 40, 1719–1729; https://doi.org/10.1016/s0032-3861(98)00404-2.Suche in Google Scholar
14. Zhao, N., Mark, L. H., Zhu, C., Park, C. B., Li, Q., Glenn, R., Thompson, T. R. Foaming poly (vinyl alcohol)/microfibrillated cellulose composites with CO2 and water as co-blowing agents. Ind. Eng. Chem. Res. 2014, 53, 11962–11972; https://doi.org/10.1021/ie502018v.Suche in Google Scholar
15. Yang, F., Mubarak, C., Keiegel, R., Kannan, R. M. Supercritical carbon dioxide (scCO2) dispersion of poly (ethylene terephthalate)/clay nanocomposites: structural, mechanical, thermal, and barrier properties. J. Appl. Polym. Sci. 2017, 134, 44779; https://doi.org/10.1002/app.44779.Suche in Google Scholar
16. Asai, S., Shimada, Y., Tominaga, Y., Sumita, M. Characterization of higher-order structure of poly (ethylene-2, 6-naphthalate) treated with supercritical carbon dioxide. Macromolecules 2005, 38, 6544–6550; https://doi.org/10.1021/ma050373q.Suche in Google Scholar
17. Shi, Q., Jing, L., Qiao, W. Solubility of n-alkanes in supercritical CO2 at diverse temperature and pressure. J. CO2 Util. 2015, 9, 29–38; https://doi.org/10.1016/j.jcou.2014.12.002.Suche in Google Scholar
18. Piqueras, C. M., Gutierrez, V., Vega, D. A., Volpe, M. A. Selective hydrogenation of cinnamaldehyde in supercritical CO2 over Pt/SiO2 and Pt/HS-CeO2: an insight about the role of carbonyl interaction with supercritical CO2 or with ceria support sites in cinamyl alcohol selectivity. Appl. Catal. Gen. 2013, 467, 253–260; https://doi.org/10.1016/j.apcata.2013.07.028.Suche in Google Scholar
19. Perinelli, D. R., Cespi, M., Bonacucina, G., Naylor, A., Whitaker, M., Lam, J. K. W., Howdle, S. M., Casettari, L., Palmieri, G. F. Pegylated biodegradable polyesters for PGSS microparticles formulation: processability, physical and release properties. Curr. Drug Deliv. 2016, 13, 673–681; https://doi.org/10.2174/1567201813666151207111034.Suche in Google Scholar PubMed
20. Li, B., Zhu, X., Hu, G. H., Tao, L., Yuan, W. Supercritical carbon dioxide-induced melting temperature depression and crystallization of syndiotactic polypropylene. Polym. Eng. Sci. 2010, 48, 1608–1614; https://doi.org/10.1002/pen.21137.Suche in Google Scholar
21. Lanza, M., Priamo, W. L., Oliveira, J. V., Dariva, C., de Oliveira, D. The effect of temperature, pressure, exposure time, and depressurization rate on lipase activity in SCCO2. Appl. Biochem. Biotechnol. 2004, 113, 181–187; https://doi.org/10.1385/abab:113:1-3:181.10.1007/978-1-59259-837-3_16Suche in Google Scholar
22. Shi, S., Yokoyama, H. Liquid crystal foams generated by pressure-driven microfluidic devices. Langmuir 2015, 31, 4429; https://doi.org/10.1021/acs.langmuir.5b00659.Suche in Google Scholar PubMed
23. Jiang, Y., Luo, Y., Lu, Y., Qin, C., Liu, H. Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale. Energy 2016, 97, 173–181; https://doi.org/10.1016/j.energy.2015.12.124.Suche in Google Scholar
24. El-Maghraby, R. M., Ramzy, M., Aboul-Gheit, A. K. High pressure supercritical carbon dioxide separation from its mixture with nitrogen at different temperatures. Mater. Sci. Forum 2020, 1008, 1–14; https://doi.org/10.4028/www.scientific.net/msf.1008.1.Suche in Google Scholar
25. Liu, T., Hu, G. H., Tong, G. S., Zhao, L., Cao, G. P., Yuan, W. K. Supercritical carbon dioxide assisted solid-state grafting process of maleic anhydride onto polypropylene. Ind. Eng. Chem. Res. 2005, 44, 4292–4299; https://doi.org/10.1021/ie0501428.Suche in Google Scholar
26. Tademir, M., Caneba, G. T., Twar, R., Wang, B. Characterization of PP/MG(OH)2 and PP/nanoclay composites with supercritical CO2 (scCO2). Polym.-Plast. Technol. Eng. 2011, 50, 1064–1070; https://doi.org/10.1080/03602559.2011.557919.Suche in Google Scholar
27. Zhou, Y.-G., Su, B., Wu, H.-H. Effect of cold-drawn fibers on the self-reinforcement of PP/LDPE composites. J. Mater. Eng. Perform. 2017, 26, 4072–4082; https://doi.org/10.1007/s11665-017-2823-3.Suche in Google Scholar
28. Zhang, C., Sun, J., Li, R., Sun, S.-S., Lafalce, E., Jiang, X. Poly (3-dodecylthienylenevinylene) s: regioregularity and crystallinity. Macromolecules 2011, 44, 6389–6396; https://doi.org/10.1021/ma200434v.Suche in Google Scholar
29. Shen, X., Hu, W., Russell, T. P. Measuring the degree of crystallinity in semicrystalline regioregular poly (3-hexylthiophene). Macromolecules 2016, 49, 4501–4509; https://doi.org/10.1021/acs.macromol.6b00799.Suche in Google Scholar
30. Zhu, R., Hoshi, T., Chishima, Y., Muroga, Y., Hagiwara, T., Yano, S., Sawaguchi, T. Microstructure and mechanical properties of polypropylene/poly (methyl methacrylate) nanocomposite prepared using supercritical carbon dioxide. Macromolecules 2011, 44, 6103–6112; https://doi.org/10.1021/ma2001965.Suche in Google Scholar
31. Sadovyi, B., Wierzbowska, M., Stelmakh, S., Boccato, S., Gierlotka, S., Irifune, T., Porowski, S., Grzegory, I. Experimental and theoretical evidence of the temperature-induced wurtzite to rocksalt phase transition in GaN under high pressure. Phys. Rev. B 2020, 102, 235109; https://doi.org/10.1103/physrevb.102.235109.Suche in Google Scholar
32. Mesguich, D., Aymonier, C., Bassat, J.-M., Mauvy, F., You, E., Watkins, J. J. Low-temperature deposition of undoped ceria thin films in scCO2 as improved interlayers for IT-SOFC. Chem. Mater. 2011, 23, 5323–5330; https://doi.org/10.1021/cm2012846.Suche in Google Scholar
33. Ellis, J. E., Sorescu, D. C., Hwang, S. I., Burkert, S. C., White, D. L., Kim, H., Star, A. Modification of carbon nitride/reduced graphene oxide van der Waals heterostructure with copper nanoparticles to improve CO2 sensitivity. ACS Appl. Mater. Interfaces 2019, 11, 41588–41594; https://doi.org/10.1021/acsami.9b13440.Suche in Google Scholar PubMed
34. Liu, J., Qin, S., Wang, G., Zhang, H., Zhou, H., Gao, Y. Batch foaming of ultra-high molecular weight polyethylene with supercritical carbon dioxide: influence of temperature and pressure. Polym. Test. 2021, 93, 106974; https://doi.org/10.1016/j.polymertesting.2020.106974.Suche in Google Scholar
35. Li, B., Zhu, X., Hu, G. H., Liu, T., Cao, G., Zhao, L., Yuan, W. Supercritical carbon dioxide-induced melting temperature depression and crystallization of syndiotactic polypropylene. Polym. Eng. Sci. 2008, 48, 1608–1614; https://doi.org/10.1002/pen.21137.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Thermodynamic behavior and crystal structure of polypropylene treated with supercritical carbon dioxide
- Investigation of conductivity, SEM, XRD studies of Mg2+ ion based TiO2 nanocomposite PVDF-HFP polymer electrolyte and application in a dye sensitized solar cell
- Computational prediction of electrical percolation threshold in polymer/graphene-based nanocomposites with finite element method
- Influence mechanisms of 2-amino-1,3,5-triazine-4,6-dithiol coating on adhesion properties of polybutylene terephthalate/aluminum interface in nano-injection molding
- Effects of enzyme-assisted ultrasonic treatment to the properties of nanofibrils isolated from wheat straw
- Preparation and Assembly
- Solution blow spinning polysulfone-Aliquat 336 nanofibers: synthesis, characterization, and application for the extraction and preconcentration of losartan from aqueous solutions
- Novel alginate immobilized TiO2 reusable functional hydrogel beads with high photocatalytic removal of dye pollutions
- Engineering and Processing
- Effects of gas-assisted technology on polymer micro coextrusion
- Influence of crystallinity on wear behavior of ultrahigh molecular weight polyethylene and the wear mechanism
- Identification of tensile behaviour of polylactic acid parts manufactured by fused deposition modelling under heat-treated conditions using nonlinear autoregressive with exogenous and transfer function models
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Thermodynamic behavior and crystal structure of polypropylene treated with supercritical carbon dioxide
- Investigation of conductivity, SEM, XRD studies of Mg2+ ion based TiO2 nanocomposite PVDF-HFP polymer electrolyte and application in a dye sensitized solar cell
- Computational prediction of electrical percolation threshold in polymer/graphene-based nanocomposites with finite element method
- Influence mechanisms of 2-amino-1,3,5-triazine-4,6-dithiol coating on adhesion properties of polybutylene terephthalate/aluminum interface in nano-injection molding
- Effects of enzyme-assisted ultrasonic treatment to the properties of nanofibrils isolated from wheat straw
- Preparation and Assembly
- Solution blow spinning polysulfone-Aliquat 336 nanofibers: synthesis, characterization, and application for the extraction and preconcentration of losartan from aqueous solutions
- Novel alginate immobilized TiO2 reusable functional hydrogel beads with high photocatalytic removal of dye pollutions
- Engineering and Processing
- Effects of gas-assisted technology on polymer micro coextrusion
- Influence of crystallinity on wear behavior of ultrahigh molecular weight polyethylene and the wear mechanism
- Identification of tensile behaviour of polylactic acid parts manufactured by fused deposition modelling under heat-treated conditions using nonlinear autoregressive with exogenous and transfer function models