Startseite New fire-resistant epoxy thermosets: nonisothermal kinetic study and flammability behavior
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

New fire-resistant epoxy thermosets: nonisothermal kinetic study and flammability behavior

  • Corneliu Hamciuc , Tachita Vlad-Bubulac , Diana Serbezeanu ORCID logo , Ionela-Daniela Carja , Elena Hamciuc , Ion Anghel , Valentin Enciu , Ioana-Emilia Şofran und Gabriela Lisa EMAIL logo
Veröffentlicht/Copyright: 5. Dezember 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

New fire-resistant thermosets are prepared based on a bisphenol A-epoxy resin which is thermally crosslinked in the presence of dicyandiamide and two phenols containing phosphorus atoms. The thermosets are characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis (TGA), and microscale combustion calorimetry (MCC) tests. A nonisothermal kinetic study is performed based on processing of TGA data applying the method proposed by Vyazovkin. The lifetime prediction analyses establish that the phosphorus-containing polymers could be used at a constant temperature of 200°C up to 200–780 min. The MCC tests reveal an improvement of the flammability behavior, as well as a significant heat release capacity reduction for phosphorus-containing samples compared to the sample which has no phosphorus component.

  1. Research funding: This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCCDI-UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0350/38 PCCDI within PNCDI III. The authors Ion Anghel, Valentin Enciu, and Ioana-Emilia Şofran are grateful for this financial support.

References

[1] Jin FL, Li X, Park SJ. J. Ind. Eng. Chem. 2015, 29, 1–11.10.1016/j.jiec.2015.03.026Suche in Google Scholar

[2] Poisson N, Maazouz A, Sautereau H, Taha M, Gambert X. J. Appl. Polym. Sci. 1998, 69, 2487–2497.10.1002/(SICI)1097-4628(19980919)69:12<2487::AID-APP20>3.0.CO;2-TSuche in Google Scholar

[3] Hayaty M, Honarkar H, Beheshty MH. Iran. Polym. J. 2013, 22, 591–598.10.1007/s13726-013-0158-ySuche in Google Scholar

[4] LaLiberte BR, Bornstein J, Sacher RE. Ind. Eng. Chem. Prod. Res. Dev. 1983, 22, 261–262.10.1021/i300010a019Suche in Google Scholar

[5] Lu SY, Hamerton I. Prog. Polym. Sci. 2002, 27, 1661–1712.10.1016/S0079-6700(02)00018-7Suche in Google Scholar

[6] Rakotomalala M, Wagner S, Döring M. Materials 2010, 3, 4300–4327.10.3390/ma3084300Suche in Google Scholar

[7] Serbezeanu D, Vlad-Bubulac T, Hamciuc C, Aflori M. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 5391–5403.10.1002/pola.24344Suche in Google Scholar

[8] Vlad-Bubulac T, Hamciuc C, Petreus O. High Perform. Polym. 2006, 18, 255–264.10.1177/0954008306059504Suche in Google Scholar

[9] Serbezeanu D, Vlad-Bubulac T, Hamciuc C, Doroftei F. High Perform. Polym. 2010, 22, 916–929.10.1177/0954008310386510Suche in Google Scholar

[10] Levchik SV, Weil ED. J. Fire Sci. 2006, 24, 345–364.10.1177/0734904106068426Suche in Google Scholar

[11] Xiong Y, Jiang Z, Xie Y, Zhang X, Xu W. J. Appl. Polym. Sci. 2013, 127, 4352–4358.10.1002/app.37635Suche in Google Scholar

[12] Liang B, Cao J, Hong XD, Wang CS. J. Appl. Polym. Sci. 2013, 128, 2759–2765.10.1002/app.38445Suche in Google Scholar

[13] Xiong YQ, Zhang XY, Liu J, Guo F, Xia XN, Xu WJ. J. Appl. Polym. Sci. 2012, 125, 1219–1225.10.1002/app.34894Suche in Google Scholar

[14] Xie C, Zeng B, Gao H, Xu Y, Luo W, Liu X, Dai L. Polym. Eng. Sci. 2014, 54, 1192–1200.10.1002/pen.23642Suche in Google Scholar

[15] Gu L, Chen G, Yao Y. Polym. Degrad. Stab. 2014, 108, 68–75.10.1016/j.polymdegradstab.2014.05.030Suche in Google Scholar

[16] Sun D, Yao Y. Polym. Degrad. Stab. 2011, 96, 1720–1724.10.1016/j.polymdegradstab.2011.08.004Suche in Google Scholar

[17] Hamciuc C, Serbezeanu D, Carja ID, Vlad-Bubulac T, Musteata VE, Forrat Pérez V, Guillem López C, López Buendia AM. J. Mater. Sci. 2013, 48, 8520–8529.10.1007/s10853-013-7670-5Suche in Google Scholar

[18] Carja ID, Serbezeanu D, Vlad-Bubulac T, Hamciuc C, Coroaba A, Lisa G, Guillem Lopez C, Fuensanta Soriano M, Forrat Perez V, Romero Sanchez MD. J. Mater. Chem. A 2014, 2, 16230–16241.10.1039/C4TA03197KSuche in Google Scholar

[19] Carja ID, Serbezeanu D, Vlad-Bubulac T, Hamciuc C, Forrat Pérez V, Romero Sánchez MD, Guillem López C, Soriano MF. J. Appl. Polym. Sci. 2015, 132, 41822.10.1002/app.41822Suche in Google Scholar

[20] Hamciuc C, Vlad-Bubulac T, Serbezeanu D, Carja ID, Hamciuc E, Lisa G, Perez VF. RSC Adv. 2016, 6, 22764–22776.10.1039/C5RA27451FSuche in Google Scholar

[21] Babrauskasa V, Peacock RD. Fire Safety J. 1992, 18, 255–272.10.1016/0379-7112(92)90019-9Suche in Google Scholar

[22] Weil ED, Levchik SV. Flame Retardants for Plastics and Textiles, Hanser Publications: Cincinnati, Ohio, 2009, Chap. 12, p 232.10.3139/9783446430655Suche in Google Scholar

[23] Lyon RE, Walters RN, Stoliarov SI. J. Therm. Anal. Calorim. 2007, 89, 441–448.10.1007/s10973-006-8257-zSuche in Google Scholar

[24] Lyon RE, Walters RN. A microscale combustion calorimeter, Report DOT/FAA/AR-01/117, Department of Transportation, Federal Aviation Administration, Feb. 2002.Suche in Google Scholar

[25] Lyon RE, Walters RN. J. Anal. Appl. Pyrol. 2004, 71, 27–46.10.1016/S0165-2370(03)00096-2Suche in Google Scholar

[26] ASTM D 7309-07. Standard test method for determining flammability characteristics of plastics and other solid materials using microscale combustion calorimetry, American Society for Testing and Materials (International), West Conshohocken, Pennsylvania, April 1, 2007.Suche in Google Scholar

[27] Drysdale DD. An Introduction to Fire Dynamics, 2nd ed., John Wiley and Sons: New York, New York, 1998.Suche in Google Scholar

[28] Quintiere JG. Fundamentals of Fire Phenomena, John Wiley and Sons: New York, New York, 2006.10.1002/0470091150Suche in Google Scholar

[29] Vyazovkin S, Wight CA. Thermochim. Acta 1999, 340–341, 53–68.10.1016/S0040-6031(99)00253-1Suche in Google Scholar

[30] Vyazovkin S. Int. Rev. Phys. Chem. 2000, 19, 45–60.10.1080/014423500229855Suche in Google Scholar

[31] Vyazovkin S, Lesnikovich AI. Thermochim. Acta 1990, 165, 273–280.10.1016/0040-6031(90)80227-PSuche in Google Scholar

[32] Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. Thermochim. Acta 2011, 520, 1–19.10.1016/j.tca.2011.03.034Suche in Google Scholar

[33] Pistor V, Soares BG, Mauler RS. Plastics Research Online10.2417/spepro.004453.Suche in Google Scholar

[34] Motahari A, Rostami AA, Omrani A, Ehsani M. J. Macromol. Sci. Part B: Physics 2015, 54, 517–532.10.1080/00222348.2015.1019331Suche in Google Scholar

[35] Xia L, Zuo L, Wang X, Lu D, Guan R. J. Adhes. Sci. Technol. 2014, 28, 1792–1807.10.1080/01694243.2014.922454Suche in Google Scholar

[36] Khawam A, Flanagan DR. J. Phys. Chem. B 2006, 110, 17315–17328.10.1021/jp062746aSuche in Google Scholar PubMed

[37] Tiwari A, Raj B. Reactions and Mechanisms in Thermal Analysis of Advanced Materials, John Wiley & Sons, 2015, p 91.10.1002/9781119117711Suche in Google Scholar

[38] Lyon RE, Speitel L, Walters RN, Crowley S. Fire Mater. 2003, 27, 195–208.10.1002/fam.828Suche in Google Scholar

[39] Wu H, Li Y, Zeng B, Chen G, Wu Y, Chen T, Dai L. React. Funct. Polym. 2018, 131, 89–99.10.1016/j.reactfunctpolym.2018.07.009Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2019-0210).


Received: 2019-07-03
Accepted: 2019-10-27
Published Online: 2019-12-05
Published in Print: 2019-12-18

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0210/html
Button zum nach oben scrollen