Abstract
Melt electrospinning is a fast-emerging technique for fibre formation. While the process is similar to solution electrospinning, the absence of solvents broadens the applications, avoiding the potential toxicity of solvent residues and enables the usage of non-dissolvable polymers. In this article, the influence of selected melt electrospinning process parameters (tip-to-collector distance, voltage, and melt temperature) on fibre diameter and diameter distribution was investigated. The screening experiments indicated that the lowest fibre diameter median was 2.19 μm. Based on the dependencies between each process parameter and median fibre diameter, the authors used response-surface plots to determine the optimal conditions to produce fibres with the desired fibre diameters. The lowest fibre diameters were obtained with the following process parameter input values: temperature, 348°C; voltage, 19 kV; and tip-to-collector distance, 3 cm. The obtained fibres indicated that the average value of fibre diameter medians decreased in comparison to the screening experiment and the median fibre diameter for the sample “Optim.” was 1.27 μm.
Acknowledgements
The authors express their sincere gratitude to Dr. Jonas Matulevicius, Dr. Martynas Tichonovas, and Dr. Darius Ciuzas for their contribution towards the development of the experimental setup for media formation. Special thanks to Ruta Sidaraviciute for the valuable discussions and inspiration. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
References
[1] Dayan CB, Afghah F, Okan BS, Yıldız M, Menceloglu Y, Culha M, Koc B. Mater. Des. 2018, 148, 87–95.10.1016/j.matdes.2018.03.053Search in Google Scholar
[2] Su C, Lu C, Cao H, Gao F, Chang J, Li Y, He C. Mater. Lett. 2017, 204, 8–11.10.1016/j.matlet.2017.05.134Search in Google Scholar
[3] Wen P, Zong MH, Linhardt RJ, Feng K, Wu H. Trends Food Sci. Technol. 2017, 70, 56–68.10.1016/j.tifs.2017.10.009Search in Google Scholar
[4] Santos RPO, Rodrigues BVM, Ramires EC, Ruvolo-Filho AC,Frollini E. Ind. Crops Prod. 2015, 72, 69–76.10.1016/j.indcrop.2015.01.024Search in Google Scholar
[5] Balgis R, Murata H, Goi Y, Ogi T, Okuyama K, Bao L. Langmuir 2017, 33, 6127–6234.10.1021/acs.langmuir.7b01193Search in Google Scholar PubMed
[6] Lee M, Kim HY. Langmuir 2014, 30, 1210–1214.10.1021/la404704zSearch in Google Scholar PubMed
[7] You X, Ye C, Guo P. J. Manuf. Process. 2017, 30, 431–438.10.1016/j.jmapro.2017.10.005Search in Google Scholar
[8] Ristovski N, Bock N, Liao S, Powell SK, Ren J, Kirby GTS,Blackwood KA, Woodruff MA. Biointerphases 2015, 10, 011006.10.1116/1.4914380Search in Google Scholar PubMed
[9] Brown TD, Edin F, Detta N, Skelton AD, Hutmacher DW, Dalton PD. Mater. Sci. Eng. C 2015, 45, 698–708.10.1016/j.msec.2014.07.034Search in Google Scholar PubMed
[10] Deshawar D, Chokshi P. J. Nonnewton. Fluid Mech. 2018, 255, 1–12.10.1016/j.jnnfm.2018.03.003Search in Google Scholar
[11] Deshawar D, Chokshi P. Polymer 2017, 131, 34–49.10.1016/j.polymer.2017.10.019Search in Google Scholar
[12] Muerza-Cascante ML, Shokoohmand A, Khosrotehrani K,Haylock D, Dalton PD, Hutmacher DW, Loessner D. Acta Biomater. 2017, 52, 145–158.10.1016/j.actbio.2016.12.040Search in Google Scholar
[13] Tourlomousis F, Chang RC. Proc. CIRP 2017, 65, 32–37.10.1016/j.procir.2017.04.009Search in Google Scholar
[14] Zaiss S, Brown TD, Reichert JC, Berner A. Materials (Basel) 2016, 9, 1–15.10.3390/ma9040232Search in Google Scholar
[15] Sidaraviciute R, Buivydiene D, Krugly E, Valatka E, Martuzevicius D. J. Photochem. Photobiol. A Chem. 2019, 368, 7–14.10.1016/j.jphotochem.2018.09.017Search in Google Scholar
[16] Buivydiene D, Krugly E, Ciuzas D, Tichonovas M, Kliucininkas L, Martuzevicius D. J. Aerosol Sci. 2019, 131, 48–63.10.1016/j.jaerosci.2019.03.003Search in Google Scholar
[17] Dalton PD, Joergensen NT, Groll J, Moeller M. Biomed. Mater. 2008, 3, 034109.10.1088/1748-6041/3/3/034109Search in Google Scholar
[18] Brown TD, Dalton PD, Hutmacher DW. Prog. Polym. Sci. 2016, 56, 116–166.10.1016/j.progpolymsci.2016.01.001Search in Google Scholar
[19] Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Polymer (Guildf). 2002, 43, 4403–4412.10.1016/S0032-3861(02)00275-6Search in Google Scholar
[20] Brown TD, Dalton PD, Hutmacher DW. Prog. Polym. Sci. 2015, 56, 116–166.10.1016/j.progpolymsci.2016.01.001Search in Google Scholar
[21] Ren J, Blackwood K, Doustgani A, Poh P, Steck RM, Stevens M, Woodruff M. J. Biomed. Mater. Res. Part A 2014, 102, 3140–3153.10.1002/jbm.a.34985Search in Google Scholar PubMed
[22] Yu S-X, Zheng J, Yan X, Wang X-X, Nie G-D, Tan Y-Q, Zhang J, Sui K-Y, Long Y-Z. Mater. Res. Express 2018, 5, 045019.10.1088/2053-1591/aab9f4Search in Google Scholar
[23] Doustgani A, Ahmadi E. J. Ind. Text. 2016, 45, 626–634.10.1177/1528083715610297Search in Google Scholar
[24] Qin Y, Cheng L, Zhang Y, Chen X, Wang X, He X, Yang W, An Y, Li H. J. Appl. Polym. Sci. 2018, 135, 42–45.10.1002/app.46554Search in Google Scholar
[25] Yördem OS, Papila M, Menceloǧlu YZ. Mater. Des. 2008, 29, 34–44.10.1016/j.matdes.2006.12.013Search in Google Scholar
[26] Beachley V, Wen X. Mater. Sci. Eng. C 2009, 29, 663–668.10.1016/j.msec.2008.10.037Search in Google Scholar PubMed PubMed Central
[27] Boaretti C, Roso M, Lorenzetti A, Modesti M. Materials (Basel) 2015, 8, 4096–4117.10.3390/ma8074096Search in Google Scholar PubMed PubMed Central
[28] Ahmadipourroudposht M, Fallahiarezoudar E, Yusof NM, Idris A. Mater. Sci. Eng. C 2015, 50, 234–241.10.1016/j.msec.2015.02.008Search in Google Scholar PubMed
[29] Khanlou HM, Ang BC, Talebian S, Barzani MM, Silakhori M, Fauzi H. Meas. J. Int. Meas. Confed. 2015, 65, 193–206.10.1016/j.measurement.2015.01.014Search in Google Scholar
[30] Xu H, Yamamoto M, Yamane H. Polymer (Guildf) 2017, 132, 206–215.10.1016/j.polymer.2017.11.006Search in Google Scholar
[31] Park HK, Joo W, Gu BK, Ha MY, You SJ, Chun HJ. J. Ind. Eng. Chem. 2018, 66, 430–437.10.1016/j.jiec.2018.06.010Search in Google Scholar
[32] Amin A, Merati AA, Bahrami SH, Bagherzadeh R. J. Text. Inst. 2016, 5000, 1–9.Search in Google Scholar
[33] Beigmoradi R, Samimi A, Mohebbi-Kalhori D. Polymer (Guildf) 2018, 143, 271–280.10.1016/j.polymer.2018.04.025Search in Google Scholar
[34] Nazari T, Garmabi H. Polym. Int. 2018, 67, 178–188.10.1002/pi.5486Search in Google Scholar
[35] Zhao D, Ren J, Qiu Y, Li H, Hua K, Li X, Deng M. J. Appl. Polym. Sci. 2015, 132, 1–8.10.1002/app.42624Search in Google Scholar
[36] Shen Y, Liu Q, Deng B, Yao P, Xia S. Fibers Polym. 2016, 17, 1227–1237.10.1007/s12221-016-6303-4Search in Google Scholar
[37] Ko J, Ahsani V, Yao SX, Mohtaram NK, Lee PC, Jun MB. J. Micromech. Microeng. 2016, 27, 025007.10.1088/1361-6439/aa4fd9Search in Google Scholar
[38] Zeng J, Chen X, Xu X, Liang Q, Bian X, Yang L, Jing X. J. Appl. Polym. Sci. 2003, 89, 1085–1092.10.1002/app.12260Search in Google Scholar
[39] Abolhasani MM, Shirvanimoghaddam K, Khayyam H, Moosavi SM, Zohdi N, Naebe M. Polym. Test. 2018, 66, 178–188.10.1016/j.polymertesting.2018.01.010Search in Google Scholar
[40] Senthil T, Anandhan S. Int. J. Plast. Technol. 2013, 17, 123–138.10.1007/s12588-013-9053-9Search in Google Scholar
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Characterization and mechanism of accelerated curing of adhesives by in situ ultrasonic vibration for bonded joints
- Effects of tension fatigue on the structure and properties of carbon black filled-SBR and SBR/TPI blends
- New fire-resistant epoxy thermosets: nonisothermal kinetic study and flammability behavior
- Preparation and assembly
- The layer-structure transition of glass-fiber-reinforced composite materials
- Geraniol and cinnamaldehyde as natural antibacterial additives for poly(lactic acid) and their plasticizing effects
- Formation of PA12 fibres via melt electrospinning process: parameter analysis and optimisation
- Flexible epoxy composite coatings modified by reactive rubber with improvements in water and corrosive resistances
- Nanocrystalline cellulose prepared by double oxidation as reinforcement in polyvinyl alcohol hydrogels
- Engineering and processing
- Improvement of stability and release of (-)-epicatechin by hot melt extrusion
- Thermodynamic analysis and injection molding of hierarchical superhydrophobic polypropylene surfaces
Articles in the same Issue
- Frontmatter
- Material properties
- Characterization and mechanism of accelerated curing of adhesives by in situ ultrasonic vibration for bonded joints
- Effects of tension fatigue on the structure and properties of carbon black filled-SBR and SBR/TPI blends
- New fire-resistant epoxy thermosets: nonisothermal kinetic study and flammability behavior
- Preparation and assembly
- The layer-structure transition of glass-fiber-reinforced composite materials
- Geraniol and cinnamaldehyde as natural antibacterial additives for poly(lactic acid) and their plasticizing effects
- Formation of PA12 fibres via melt electrospinning process: parameter analysis and optimisation
- Flexible epoxy composite coatings modified by reactive rubber with improvements in water and corrosive resistances
- Nanocrystalline cellulose prepared by double oxidation as reinforcement in polyvinyl alcohol hydrogels
- Engineering and processing
- Improvement of stability and release of (-)-epicatechin by hot melt extrusion
- Thermodynamic analysis and injection molding of hierarchical superhydrophobic polypropylene surfaces