New fire-resistant epoxy thermosets: nonisothermal kinetic study and flammability behavior
-
Corneliu Hamciuc
, Ionela-Daniela Carja
Abstract
New fire-resistant thermosets are prepared based on a bisphenol A-epoxy resin which is thermally crosslinked in the presence of dicyandiamide and two phenols containing phosphorus atoms. The thermosets are characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis (TGA), and microscale combustion calorimetry (MCC) tests. A nonisothermal kinetic study is performed based on processing of TGA data applying the method proposed by Vyazovkin. The lifetime prediction analyses establish that the phosphorus-containing polymers could be used at a constant temperature of 200°C up to 200–780 min. The MCC tests reveal an improvement of the flammability behavior, as well as a significant heat release capacity reduction for phosphorus-containing samples compared to the sample which has no phosphorus component.
Research funding: This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCCDI-UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0350/38 PCCDI within PNCDI III. The authors Ion Anghel, Valentin Enciu, and Ioana-Emilia Şofran are grateful for this financial support.
References
[1] Jin FL, Li X, Park SJ. J. Ind. Eng. Chem. 2015, 29, 1–11.10.1016/j.jiec.2015.03.026Search in Google Scholar
[2] Poisson N, Maazouz A, Sautereau H, Taha M, Gambert X. J. Appl. Polym. Sci. 1998, 69, 2487–2497.10.1002/(SICI)1097-4628(19980919)69:12<2487::AID-APP20>3.0.CO;2-TSearch in Google Scholar
[3] Hayaty M, Honarkar H, Beheshty MH. Iran. Polym. J. 2013, 22, 591–598.10.1007/s13726-013-0158-ySearch in Google Scholar
[4] LaLiberte BR, Bornstein J, Sacher RE. Ind. Eng. Chem. Prod. Res. Dev. 1983, 22, 261–262.10.1021/i300010a019Search in Google Scholar
[5] Lu SY, Hamerton I. Prog. Polym. Sci. 2002, 27, 1661–1712.10.1016/S0079-6700(02)00018-7Search in Google Scholar
[6] Rakotomalala M, Wagner S, Döring M. Materials 2010, 3, 4300–4327.10.3390/ma3084300Search in Google Scholar
[7] Serbezeanu D, Vlad-Bubulac T, Hamciuc C, Aflori M. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 5391–5403.10.1002/pola.24344Search in Google Scholar
[8] Vlad-Bubulac T, Hamciuc C, Petreus O. High Perform. Polym. 2006, 18, 255–264.10.1177/0954008306059504Search in Google Scholar
[9] Serbezeanu D, Vlad-Bubulac T, Hamciuc C, Doroftei F. High Perform. Polym. 2010, 22, 916–929.10.1177/0954008310386510Search in Google Scholar
[10] Levchik SV, Weil ED. J. Fire Sci. 2006, 24, 345–364.10.1177/0734904106068426Search in Google Scholar
[11] Xiong Y, Jiang Z, Xie Y, Zhang X, Xu W. J. Appl. Polym. Sci. 2013, 127, 4352–4358.10.1002/app.37635Search in Google Scholar
[12] Liang B, Cao J, Hong XD, Wang CS. J. Appl. Polym. Sci. 2013, 128, 2759–2765.10.1002/app.38445Search in Google Scholar
[13] Xiong YQ, Zhang XY, Liu J, Guo F, Xia XN, Xu WJ. J. Appl. Polym. Sci. 2012, 125, 1219–1225.10.1002/app.34894Search in Google Scholar
[14] Xie C, Zeng B, Gao H, Xu Y, Luo W, Liu X, Dai L. Polym. Eng. Sci. 2014, 54, 1192–1200.10.1002/pen.23642Search in Google Scholar
[15] Gu L, Chen G, Yao Y. Polym. Degrad. Stab. 2014, 108, 68–75.10.1016/j.polymdegradstab.2014.05.030Search in Google Scholar
[16] Sun D, Yao Y. Polym. Degrad. Stab. 2011, 96, 1720–1724.10.1016/j.polymdegradstab.2011.08.004Search in Google Scholar
[17] Hamciuc C, Serbezeanu D, Carja ID, Vlad-Bubulac T, Musteata VE, Forrat Pérez V, Guillem López C, López Buendia AM. J. Mater. Sci. 2013, 48, 8520–8529.10.1007/s10853-013-7670-5Search in Google Scholar
[18] Carja ID, Serbezeanu D, Vlad-Bubulac T, Hamciuc C, Coroaba A, Lisa G, Guillem Lopez C, Fuensanta Soriano M, Forrat Perez V, Romero Sanchez MD. J. Mater. Chem. A 2014, 2, 16230–16241.10.1039/C4TA03197KSearch in Google Scholar
[19] Carja ID, Serbezeanu D, Vlad-Bubulac T, Hamciuc C, Forrat Pérez V, Romero Sánchez MD, Guillem López C, Soriano MF. J. Appl. Polym. Sci. 2015, 132, 41822.10.1002/app.41822Search in Google Scholar
[20] Hamciuc C, Vlad-Bubulac T, Serbezeanu D, Carja ID, Hamciuc E, Lisa G, Perez VF. RSC Adv. 2016, 6, 22764–22776.10.1039/C5RA27451FSearch in Google Scholar
[21] Babrauskasa V, Peacock RD. Fire Safety J. 1992, 18, 255–272.10.1016/0379-7112(92)90019-9Search in Google Scholar
[22] Weil ED, Levchik SV. Flame Retardants for Plastics and Textiles, Hanser Publications: Cincinnati, Ohio, 2009, Chap. 12, p 232.10.3139/9783446430655Search in Google Scholar
[23] Lyon RE, Walters RN, Stoliarov SI. J. Therm. Anal. Calorim. 2007, 89, 441–448.10.1007/s10973-006-8257-zSearch in Google Scholar
[24] Lyon RE, Walters RN. A microscale combustion calorimeter, Report DOT/FAA/AR-01/117, Department of Transportation, Federal Aviation Administration, Feb. 2002.Search in Google Scholar
[25] Lyon RE, Walters RN. J. Anal. Appl. Pyrol. 2004, 71, 27–46.10.1016/S0165-2370(03)00096-2Search in Google Scholar
[26] ASTM D 7309-07. Standard test method for determining flammability characteristics of plastics and other solid materials using microscale combustion calorimetry, American Society for Testing and Materials (International), West Conshohocken, Pennsylvania, April 1, 2007.Search in Google Scholar
[27] Drysdale DD. An Introduction to Fire Dynamics, 2nd ed., John Wiley and Sons: New York, New York, 1998.Search in Google Scholar
[28] Quintiere JG. Fundamentals of Fire Phenomena, John Wiley and Sons: New York, New York, 2006.10.1002/0470091150Search in Google Scholar
[29] Vyazovkin S, Wight CA. Thermochim. Acta 1999, 340–341, 53–68.10.1016/S0040-6031(99)00253-1Search in Google Scholar
[30] Vyazovkin S. Int. Rev. Phys. Chem. 2000, 19, 45–60.10.1080/014423500229855Search in Google Scholar
[31] Vyazovkin S, Lesnikovich AI. Thermochim. Acta 1990, 165, 273–280.10.1016/0040-6031(90)80227-PSearch in Google Scholar
[32] Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. Thermochim. Acta 2011, 520, 1–19.10.1016/j.tca.2011.03.034Search in Google Scholar
[33] Pistor V, Soares BG, Mauler RS. Plastics Research Online10.2417/spepro.004453.Search in Google Scholar
[34] Motahari A, Rostami AA, Omrani A, Ehsani M. J. Macromol. Sci. Part B: Physics 2015, 54, 517–532.10.1080/00222348.2015.1019331Search in Google Scholar
[35] Xia L, Zuo L, Wang X, Lu D, Guan R. J. Adhes. Sci. Technol. 2014, 28, 1792–1807.10.1080/01694243.2014.922454Search in Google Scholar
[36] Khawam A, Flanagan DR. J. Phys. Chem. B 2006, 110, 17315–17328.10.1021/jp062746aSearch in Google Scholar PubMed
[37] Tiwari A, Raj B. Reactions and Mechanisms in Thermal Analysis of Advanced Materials, John Wiley & Sons, 2015, p 91.10.1002/9781119117711Search in Google Scholar
[38] Lyon RE, Speitel L, Walters RN, Crowley S. Fire Mater. 2003, 27, 195–208.10.1002/fam.828Search in Google Scholar
[39] Wu H, Li Y, Zeng B, Chen G, Wu Y, Chen T, Dai L. React. Funct. Polym. 2018, 131, 89–99.10.1016/j.reactfunctpolym.2018.07.009Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2019-0210).
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Characterization and mechanism of accelerated curing of adhesives by in situ ultrasonic vibration for bonded joints
- Effects of tension fatigue on the structure and properties of carbon black filled-SBR and SBR/TPI blends
- New fire-resistant epoxy thermosets: nonisothermal kinetic study and flammability behavior
- Preparation and assembly
- The layer-structure transition of glass-fiber-reinforced composite materials
- Geraniol and cinnamaldehyde as natural antibacterial additives for poly(lactic acid) and their plasticizing effects
- Formation of PA12 fibres via melt electrospinning process: parameter analysis and optimisation
- Flexible epoxy composite coatings modified by reactive rubber with improvements in water and corrosive resistances
- Nanocrystalline cellulose prepared by double oxidation as reinforcement in polyvinyl alcohol hydrogels
- Engineering and processing
- Improvement of stability and release of (-)-epicatechin by hot melt extrusion
- Thermodynamic analysis and injection molding of hierarchical superhydrophobic polypropylene surfaces
Articles in the same Issue
- Frontmatter
- Material properties
- Characterization and mechanism of accelerated curing of adhesives by in situ ultrasonic vibration for bonded joints
- Effects of tension fatigue on the structure and properties of carbon black filled-SBR and SBR/TPI blends
- New fire-resistant epoxy thermosets: nonisothermal kinetic study and flammability behavior
- Preparation and assembly
- The layer-structure transition of glass-fiber-reinforced composite materials
- Geraniol and cinnamaldehyde as natural antibacterial additives for poly(lactic acid) and their plasticizing effects
- Formation of PA12 fibres via melt electrospinning process: parameter analysis and optimisation
- Flexible epoxy composite coatings modified by reactive rubber with improvements in water and corrosive resistances
- Nanocrystalline cellulose prepared by double oxidation as reinforcement in polyvinyl alcohol hydrogels
- Engineering and processing
- Improvement of stability and release of (-)-epicatechin by hot melt extrusion
- Thermodynamic analysis and injection molding of hierarchical superhydrophobic polypropylene surfaces