Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
Abstract
Poly (butylene succinate-co-butylene-3-hydroxyphenylphosphinyl-propionate) (PBSH) was synthesized through polycondensation. Then, 4,4′-methylene diphenyl diisocyanate (MDI) was introduced into PBSH matrix by reactive blending. The chemical structure and properties of the blending products were investigated using Fourier Transform Infrared Spectroscopy (FT-IR), differential scanning calorimetry (DSC), limiting oxygen index (LOI) tests, thermogravimetric analysis (TGA), and vertical burning tests. The results proved that MDI can improve the mechanical properties and flame retardancy of PBSH. In addition, it was found that the crosslinking structure can reduce the hydrolysis rate of PBSH and effectively eliminate the melt-dripping of PBSH during combustion.
Funding source: Foundation of Jiangxi Educational Committee
Award Identifier / Grant number: GJJ160565
Funding source: Foundation of East China University of Technology
Award Identifier / Grant number: DHBK2016110
Research funding: This work was supported by the Foundation of Jiangxi Educational Committee under grant no. GJJ160565; East China University of Technology Research Foundation for Advanced Talents no. DHBK2016110.
Conflict of interest statement: We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.
References
1. Xu J., Guo B. H. Biotechnol. J. 2010, 5, 1149–1163. https://doi.org/10.1002/biot.201000136.Suche in Google Scholar PubMed
2. Hongsriphan N., Pinpueng A. J. Polym. Environ. 27 (2), 434–443. https://doi.org/10.1007/s10924-018-1358-5.Suche in Google Scholar
3. Liminana P., Garcia-Sanoguera D., Quiles-Carrillo L., Balart R., Montanes N. Compos. B Eng. 2018, 144, 153–162. https://doi.org/10.1016/j.compositesb.2018.02.031.Suche in Google Scholar
4. Wang Y., Liu C., Shi X., Liang J., Jia Z., Shi G. Polym. Compos. 2019, 40, (1), 202–209. https://doi.org/10.1002/pc.24629.Suche in Google Scholar
5. Yue X., Li J., Liu P., Lin Y., Du X. J. Appl. Polym. Sci. 2018, 135, 46210–46220. https://doi.org/10.1002/app.46210.Suche in Google Scholar
6. Jin T. X., Zhang X. Y., Tao Y. F., Wang D., Chen F., Fu Q. RSC Adv. 2015, 5, 61364–61370. https://doi.org/10.1039/c5ra11390c.Suche in Google Scholar
7. Hua Y., Zhou Z., Cheng P., Liu W., Hu Z., Wei W., Zhang Q., J. Macromol. Sci. B. 2017, 56, (5), 315–323. https://doi.org/10.1080/00222348.2017.1302117.Suche in Google Scholar
8. Li D. F., Zhao X., Jia Y. W., Wang X. L., Wang Y. Z. Compos. Commun. 2018, 8, 52–57. https://doi.org/10.1016/j.coco.2018.04.001.Suche in Google Scholar
9. Hao Y., Yang H., Pan H., Zhang H., Ran X. Polym. Plast. Technol. 2018, 57, 1882–1892. https://doi.org/10.1080/03602559.2018.1447123.Suche in Google Scholar
10. Dutta J., Chatterjee T., Ramachandran P., Naskar K. Polym. Plast. Technol. 2018, 57, 1642–1656. https://doi.org/10.1080/03602559.2017.1410847.Suche in Google Scholar
11. Lei J., Kang H., Zhao W., Zhang L., Mao L., Wang Y. J. Appl. Polym. Sci. 2014, 131, 9179–9184. https://doi.org/10.1007/s10973-016-5756-4.Suche in Google Scholar
12. Hernández-Ortiz J. C., Van Steenberge P. H. M., Reyniers M. F., Marin G. B., D'hooge D. R., Duchateau J. N. E. AIChE J. 2017, 63, 4944–4961. https://doi.org/10.1002/aic.15842.Suche in Google Scholar
13. Wu L., Guo J., Zhao S. Polym. Bull. 2017, 74, 2099–2116. https://doi.org/10.1007/s00289-016-1826-9.Suche in Google Scholar
14. Zhao H. B., Chen L., Yang J. C., Ge X. G., Wang Y. Z. J. Mater. Chem. 2012, 22, 19849–19857. https://doi.org/10.1039/c2jm34376b.Suche in Google Scholar
15. Wang J., Pan S., Zhang Y., Guo S. Polym. Test. 2017, 59, 253–261. https://doi.org/10.1016/j.polymertesting.2016.12.034.Suche in Google Scholar
16. Soni R. K., Singh H., Dutt K., Arora P. J. Polym. Res. 2010, 17, 411–427. https://doi.org/10.1007/s10965-009-9327-2.Suche in Google Scholar
17. Jin T. X., Liu C., Mi Z., Chai S. G., Feng C., Qiang F.. Compos. Appl. Sci. 2015, 68, 193–201. https://doi.org/10.1016/j.compositesa.2014.09.025.10.1016/j.compositesa.2014.09.025Suche in Google Scholar
18. Jin T. X., Zhou M., Hu S. D., Chen F., Fu Q., Fu Y. Chin. J. Polym. Sci. 2014, 32, 953–960. https://doi.org/10.1007/s10118-014-1463-4.Suche in Google Scholar
19. Wei Z., Ge J., Gu Z., Li W., Xin C., Yi Z., Yang Y., J. Appl. Polym. Sci. 2015, 74, 2546–2551. https://doi.org/10.1002/(SICI)1097-4628(19991205)74:10<2546::AID-APP24>3.0.CO;2-Z.10.1002/(SICI)1097-4628(19991205)74:10<2546::AID-APP24>3.0.CO;2-ZSuche in Google Scholar
20. Bummer P. M., Knutson K. Macromolecules. 1990, 23, 4357–4362. https://doi.org/10.1021/ma00222a005.Suche in Google Scholar
21. Wang C. B., Cooper S. L. Macromolecules. 1983, 16, 775–786. https://doi.org/10.1021/ma00239a014.Suche in Google Scholar
22. Song P. A., Zhu Y., Tong L., Fang Z. Nanotechnology. 2008, 19, 225707. https://doi.org/10.1088/0957-4484/19/22/225707.Suche in Google Scholar PubMed
23. Papageorgiou G. Z., Bikiaris D. N. J. Polym. Sci. Pol. Phys. 2010, 44, 584–597. https://doi.org/10.1002/polb.20727.Suche in Google Scholar
24. Zen A., Saphiannikova M., Neher D., Grenzer J., Grigorian S., Pietsch U., Asawapirom U., Janietz S., Scherf U., Lieberwirth I., Macromolecules. 2006, 39, 2162–2171. https://doi.org/10.1021/ma0521349.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs