Startseite The infrared spectroscopy of chitosan films doped with silver and gold nanoparticles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The infrared spectroscopy of chitosan films doped with silver and gold nanoparticles

  • Evgeniya S. Zemlyakova , Anna V. Tcibulnikova EMAIL logo , Vasilyi A. Slezhkin , Andrey Yu. Zubin , Ilya G. Samusev und Valeryi V. Bryukhanov
Veröffentlicht/Copyright: 1. März 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This work presents the dependences of the absorption intensity of the acid-soluble chitosan biopolymer films in the infrared (IR) region of the spectrum on the concentrations of silver and gold nanoparticles (NPs) of different morphologies. The interaction mechanisms in the vibrational spectra overlapping area of the silver NPs and chitosan molecules (2500–3500 cm−1) were observed. The influence of the metal NPs on the dipole moments of the OH-, NH3+- and CH-chitosan molecule group oscillations was established. This interaction leads to a linear increase of the IR absorption intensity with an increase of the silver nanoparticle concentration, synthesized by the citrate and borohydride methods. The presence of silver and gold ablative NPs in the chitosan films demonstrates the IR absorption intensity exponential decrease with the metal NPs’ concentrations.

  1. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] Rinaudo MJ. Prog. Polym. Sci. 2006, 31, 603–632.10.1016/j.progpolymsci.2006.06.001Suche in Google Scholar

[2] Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R. Prog. Polym. Sci. 2014, 39, 1644–1667.10.1016/j.progpolymsci.2014.02.008Suche in Google Scholar

[3] Saleh TA. Article Aqua 2015, 64, 892–903.10.2166/aqua.2015.050Suche in Google Scholar

[4] Saleh TA. Environ. Sci. Pollut. Res. 2015, 22, 16721–16731.10.1007/s11356-015-4866-zSuche in Google Scholar

[5] Saleh TA, Sarı A, Tuzen M. J. Mol. Liq. 2016, 219, 937–945.10.1016/j.molliq.2016.03.060Suche in Google Scholar

[6] Pokhrel S, Yadav PN, Adhikari R. Nepal J. Sci. Technol. 2015, 16, 99–104.10.3126/njst.v16i1.14363Suche in Google Scholar

[7] Croisier F, Jérôme C. Eur. Polym. J. 2015, 49, 780–792.10.1016/j.eurpolymj.2012.12.009Suche in Google Scholar

[8] Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I. Int. J. Biol. Macromol. 2018, 110, 97–109.10.1016/j.ijbiomac.2017.08.140Suche in Google Scholar

[9] Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF. Biomed. Res. Int. 2015, 2015, 821279.10.1155/2015/821279Suche in Google Scholar

[10] Jiang T, Kumbar SG, Nair LS, Laurencin CT. Curr. Top. Med. Chem. 2008, 8, 54–64.10.2174/156802608783334015Suche in Google Scholar

[11] Muzzarelli Riccardo AA, Tubertini O. Talanta 1969, 16, 1571–1577.10.1016/0039-9140(69)80218-3Suche in Google Scholar

[12] Heiligtag FJ, Niederberger M. Mater. Today 2013, 16, 262–271.10.1016/j.mattod.2013.07.004Suche in Google Scholar

[13] Salata OV. J. Nanobiotechnol. 2004, 2, 3.10.1186/1477-3155-2-3Suche in Google Scholar PubMed PubMed Central

[14] Kamran M, Haroon M, Popoola SA, Almohammedi AR, Al-Saadi AA, Saleh TA. J. Mol. Liq. 2019, 273, 536–542.10.1016/j.molliq.2018.10.037Suche in Google Scholar

[15] Haruna K, Saleh TA, Hossain MK, Al-Saadi AA. Chem. Eng. J. 2016, 304, 141–148.10.1016/j.cej.2016.06.050Suche in Google Scholar

[16] Ali I, Akl MR, Meligi GA, Saleh TA. Results in Physics 2017, 7, 1319–1328.10.1016/j.rinp.2017.03.028Suche in Google Scholar

[17] Saleh TA, Al-Shalalfeh MM, Al-Saadi AA. Sci. Rep. 2016, 6, 32185.10.1038/srep32185Suche in Google Scholar PubMed PubMed Central

[18] Kumar-Krishnan S, Prokhorov E, Hernández-Iturriaga M, Mota-Morales DJ, Vázquez-Lepe M, Kovalenko Y, Sanchez IC, Luna-Bárcenasa G. Eur. Polym. J. 2015, 67, 242–251.10.1016/j.eurpolymj.2015.03.066Suche in Google Scholar

[19] Espinoza-Castaneda M, Escosura-Muñiz A, González-Ortiz G, Martín-Orúe SM, Francisco Pérez J, Merkoci A. Biosens. Bioelectron. 2013, 40, 271–276.10.1016/j.bios.2012.07.042Suche in Google Scholar PubMed

[20] Huang D, Liao F, Molesa S, Redinger D, Subramanian V. J. Electrochem. Soc. 2003, 150, 412–417.10.1149/1.1627355Suche in Google Scholar

[21] Malynych S, Chumanov G. J. Am. Chem. Soc. 2003, 125, 2896–2898.10.1021/ja029453pSuche in Google Scholar PubMed

[22] Regiel A, Irusta S, Kyzioł A, Arruebo M, Santamaria J. Nanotechnology 2013, 24, 015101.10.1088/0957-4484/24/1/015101Suche in Google Scholar PubMed

[23] Jena P, Mohanty S, Mallick R, Jacob B, Sonawane A. Int. J. Nanomed. 2012, 7, 1805–18.10.2147/IJN.S28077Suche in Google Scholar PubMed PubMed Central

[24] Vimala K, Murali Mohan Y, Samba Sivudu K, Varaprasad K, Ravindra S, Narayana Reddy N, Padma Y, Sreedhar B, MohanaRajua K. Colloids Surf. B 2010, 76, 248–258.10.1016/j.colsurfb.2009.10.044Suche in Google Scholar PubMed

[25] Tsibulnikova AV, Bryukhanov VV, Slezhkin VA. Russian Phys. J. 2015, 57, 1716–1724.10.1007/s11182-015-0443-7Suche in Google Scholar

[26] Bryukhanov VV, Minaev BM, Tsibulnikova AV, Tikhomirova NS, Slezhkin VA. J. Opt. Technol. 2014, 81, 625–630.10.1364/JOT.81.000625Suche in Google Scholar

[27] Saleh TA. J. Clean. Prod. 2018, 172, 2123–2132.10.1016/j.jclepro.2017.11.208Suche in Google Scholar

[28] Saleh TA. Desalin. Water Treat. 2015, 57, 10730–10744.10.1080/19443994.2015.1036784Suche in Google Scholar

[29] Nakanishi K. Infrared absorption spectroscopy, practical. Stanford University: Nankodo Company Limited, 1962.Suche in Google Scholar

[30] Silva SML, Braga CRC, Fook MVL, Raposo CMO, Carvalho LH, Canedo EL (April 25th 2012). Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nanocomposites, Infrared Spectroscopy - Materials Science, Engineering and Technology, Theophile Theophanides, IntechOpen, DOI: 10.5772/35522. Available from: https://www.intechopen.com/books/infrared-spectroscopy-materials-science-engineering-and-technology/application-of-infrared-spectroscopy-to-analysis-of-chitosan-clay-nanocomposites.10.5772/35522Suche in Google Scholar

[31] Gaponenko SV. Introduction to Nanophotonics. Cambridge University Press: Cambridge, 2010.10.1017/CBO9780511750502Suche in Google Scholar

[32] Strelchuk V, Kolomys O, Golichenko BO, Boyko MI, Kaganovich EB, Krishchenko IM, Kravchenko S, Lytvyn O, Manoilov EG, Nasieka I. SPQEO 2015, 18, 46–52.10.15407/spqeo18.01.046Suche in Google Scholar

[33] Maer SV. Plasmonics: Fundamentals and Applications. Springer: NY, USA, 2007.10.1007/0-387-37825-1Suche in Google Scholar

[34] Bryukhanov VV, Tsibulnikova AV, Samusev IG, Slezhkin VA. J Appl. Spectrosc. 2014, 81, 570–576.10.1007/s10812-014-9971-0Suche in Google Scholar

[35] Tsibulnikova AV, Slezhkin VA, Samusev IG, Bryukhanov VV. J. Nanophoton. 2018, 12, 030501.10.1117/1.JNP.12.030501Suche in Google Scholar

[36] Govorov AO, Lee J, Kotov NA. Phys. Rev. 2007, 76, 25.10.1103/PhysRevB.76.125308Suche in Google Scholar

Received: 2018-11-09
Accepted: 2019-02-04
Published Online: 2019-03-01
Published in Print: 2019-05-01

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2018-0356/html
Button zum nach oben scrollen