Startseite Preparation and properties of multi-walled carbon nanotubes and eggshell dual-modified polycaprolactone composite scaffold
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation and properties of multi-walled carbon nanotubes and eggshell dual-modified polycaprolactone composite scaffold

  • Pingsheng Zhang ORCID logo , Yong Xin EMAIL logo , Fanrong Ai und Chuanliang Cao
Veröffentlicht/Copyright: 20. März 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The combination of double-fillers with synthetic polymers has been an attractive route for developing bone scaffolds. In this article, polycaprolactone (PCL) scaffolds were produced using a selective laser sintering (SLS) technique; multi-walled carbon nanotubes (MWCNTs) and eggshell (ES) were used as two fillers to improve their mechanical and osteogenic properties. The crystal phase, morphology, hydrophilicity, biocompatibility and mechanical properties of the composite scaffold were detected using X-ray diffraction, scanning electron microscope, water contact angle tester and in vitro cell test, respectively. Results show that ES improved the hydrophilicity and biocompatibility of the scaffolds obviously, whereas MWCNTs enhanced their compression and tensile strength. The PCL/ES/MWCNTs composited scaffold prepared by SLS possess excellent biocompatibility and mechanical strength, showing a potential application for bone repair.

Award Identifier / Grant number: 51365038

Funding statement: This work was supported by the National Natural Science Foundation of China (Funder Id: 10.13039/501100001809, no. 51365038) and the Natural Science Foundation of Jiangxi Province of China (no. 20161BAB206123).

References

[1] Gao C, Peng S, Feng P, Shuai C. Bone Res. 2017, 5, 17059.10.1038/boneres.2017.59Suche in Google Scholar PubMed PubMed Central

[2] Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, Li S, Deng Y, He N. Bone Res. 2017, 5, 75–94.10.1038/boneres.2017.46Suche in Google Scholar PubMed PubMed Central

[3] Martínez-Abad A, Sánchez G, Fuster V, Lagaron JM, Ocio MJ. Food Control. 2013, 34, 214–220.10.1016/j.foodcont.2013.04.025Suche in Google Scholar

[4] Liang JZ, Zhou L, Tang CY, Tsui CP, Li FJ. Polym. Test. 2012, 31, 149–154.10.1016/j.polymertesting.2011.10.006Suche in Google Scholar

[5] Kang J, Chen L, Okubayashi S, Sukigara S. J. Appl. Polym. Sci. 2012, 124, E83–E90.10.1002/app.35538Suche in Google Scholar

[6] Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S. Biomaterials 2005, 26, 4817–4827.10.1016/j.biomaterials.2004.11.057Suche in Google Scholar PubMed

[7] Ho WF, Hsu HC, Hsu SK, Huang CW, Wu SC. Ceram. Int. 2013, 39, 6467–6473.10.1016/j.ceramint.2013.01.076Suche in Google Scholar

[8] Baláž P, Calka A, Zorkovská A, Baláž M. Mater. Manuf. Process. 2013, 28, 343–347.10.1080/10426914.2012.709294Suche in Google Scholar

[9] Wu SC, Tsou HK, Hsu HC, Hsu SK, Liou SP, Ho WF. Ceram. Int. 2013, 39, 8183–8188.10.1016/j.ceramint.2013.03.094Suche in Google Scholar

[10] Park JW, Bae SR, Suh JY, Lee DH, Kim SH, Kim H, Lee CS. J. Biomed. Mater. Res. A. 2008, 87, 203–214.10.1002/jbm.a.31768Suche in Google Scholar PubMed

[11] Park JW, Jang JH, Bae SR, An CH, Suh JY. Clin. Oral. Implants Res. 2009, 20, 372–378.10.1111/j.1600-0501.2008.01602.xSuche in Google Scholar PubMed

[12] Biscaia SI, Viana TF, Almeida HA, Bártolo PJ. Mater. Today: Proc. 2015, 2, 208–216.10.1016/j.matpr.2015.04.024Suche in Google Scholar

[13] Sahoo NG, Pan YZ, Li L, He CB. Nanomedicine – UK 2013, 8, 639–653.10.2217/nnm.13.44Suche in Google Scholar PubMed

[14] Gao C, Feng P, Peng S, Shuai C. Acta Biomater. 2017, 61, 1.10.1016/j.actbio.2017.05.020Suche in Google Scholar PubMed

[15] Mattioli-Belmonte M, Vozzi G, Whulanza Y, Seggiani M, Fantauzzi V, Orsini G, Ahluwalia A. Mater. Sci. Eng.: C. 2012, 32, 152–159.10.1016/j.msec.2011.10.010Suche in Google Scholar

[16] Zarei M, Karbasi S. J. Porous Mat. 2018, 25, 259–272.10.1007/s10934-017-0439-5Suche in Google Scholar

[17] Shuai C, Feng P, Wu P, Liu Y, Liu X, Lai D, Gao C, Peng S. Chem. Eng. J. 2017, 313, 487–497.10.1016/j.cej.2016.11.095Suche in Google Scholar

[18] Gogolewski S, Gorna K, Zaczynska E, Czarny A. J. Biomed. Mater. Res. A 2008, 85, 456–465.10.1002/jbm.a.31481Suche in Google Scholar PubMed

[19] Kokubo T, Takadama H. Biomaterials 2006, 27, 2907–2915.10.1016/j.biomaterials.2006.01.017Suche in Google Scholar PubMed

[20] Feng P, Wu P, Gao C, Yang Y, Guo W, Yang W, Shuai C. Adv. Sci. 2018, 5, 1700817.10.1002/advs.201700817Suche in Google Scholar PubMed PubMed Central

Received: 2018-08-04
Accepted: 2019-01-03
Published Online: 2019-03-20
Published in Print: 2019-03-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2018-0246/html
Button zum nach oben scrollen