Abstract
The effects of low-pressure RF N2-O2 plasma produced using a 13.56 MHz hollow cathode discharge system on the polymeric materials in terms of both biological and chemical sides are studied. A complete inactivation of most of the studied bacteria has occurred within 30 min. However, this treatment caused an increase of the surface hydrophilicity, as manifested by the contact angle measurements. This increase was explained by the formation of the N and O functionalities revealed by the X-ray photoelectron technique analysis. A careful analysis of the high-resolution C 1s peak has also revealed some variations on the C–C, C–O and O=C– bonds and the emergence of a new C-N bond.
References
[1] Saloum S, Naddaf M, Alkhaled B. J. Phys. D Appl. Phys. 2008, 41, 045205.10.1088/0022-3727/41/4/045205Suche in Google Scholar
[2] Ishaq M, Evans MM, Ostrikov KK. Int. J. Cancer 2014, 134, 1517–1528.10.1002/ijc.28323Suche in Google Scholar PubMed
[3] Saloum S, Akel M, Alkhaled B. J. Phys. D Appl. Phys. 2009, 42, 175206.10.1088/0022-3727/42/17/175206Suche in Google Scholar
[4] Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K. Phys. Rep. 2016, 630, 1–84.10.1016/j.physrep.2016.03.003Suche in Google Scholar
[5] Li Y, Ho Kang M, Sup Uhm H, Lee GJ, Choi E, Han I. Sci. Rep. 2017, 7, 45781.10.1038/srep45781Suche in Google Scholar PubMed PubMed Central
[6] Banoriya D, Purohit R, Dwivedi RK. Mater. Today: Proceed. 2017, 4, 3534–3541.10.1016/j.matpr.2017.02.244Suche in Google Scholar
[7] Mrad O, Saunier J, Aymes Chodur C, Rosilio V, Agnely F, Aubert P, Vigneron J, Etcheberry A, Yagoubi N. Radiat. Phys. Chem. 2010, 79, 93–103.10.1016/j.radphyschem.2009.08.038Suche in Google Scholar
[8] González ME, Lunati C, Floccari M, Salmoral EM. Int. J. Polym. Mater. Polym. Biomater. 2009, 58, 129–140.10.1080/00914030802583726Suche in Google Scholar
[9] Mrad O, Saunier J, Aymes-Chodur C, Mazel V, Rosilio V, Agnely F, Vigneron J, Etcheberry A, Yagoubi N. Eur. Polym. J. 2011, 47, 2403–2413.10.1016/j.eurpolymj.2011.09.026Suche in Google Scholar
[10] Mrad O, Saunier J, Aymes-Chodur C, Rosilio V, Bouttier S, Agnely F, Aubert P, Vigneron J, Etcheberry A, Yagoubi N. Microsc. Microanal. 2010, 16, 764–778.10.1017/S1431927610093876Suche in Google Scholar PubMed
[11] Pal K, Banthia AK, Majumdar DK. Des. Monomers Polym. 2009, 12, 197–220.10.1163/156855509X436030Suche in Google Scholar
[12] Rogers, WJ. In Sterilisation of Biomaterials and Medical Devices, Lerouge, S, Simmons, A, Eds., Woodhead Publishing, 2012, p. 151–211.10.1533/9780857096265.151Suche in Google Scholar
[13] Pointu A-M, Ricard A, Dodet B, Odic E, Larbre J, Ganciu M. J. Phys. D: Appl. Phys. 2005, 38, 1905.10.1088/0022-3727/38/12/009Suche in Google Scholar
[14] Xu L, Nonaka H, Zhou HY, Ogino A, Nagata T, Koide Y, Nanko S, Kurawaki I, Nagatsu M. J. Phys. D. Appl. Phys. 2007, 40, 803.10.1088/0022-3727/40/3/017Suche in Google Scholar
[15] Boudam MK, Saoudi B, Moisan M, Ricard A. J. Phys. D: Appl. Phys. 2007, 40, 1694.10.1088/0022-3727/40/6/019Suche in Google Scholar
[16] Saloum S, Akel M, Alkhaled B. J. Phys. D: Appl. Phys. 2009, 42, 085201.10.1088/0022-3727/42/8/085201Suche in Google Scholar
[17] Mrad O, Saloum S, Al-Mariri A. Vacuum 2013, 88, 11–16.10.1016/j.vacuum.2012.08.002Suche in Google Scholar
[18] Al-mariri A, Saloum S, Mrad O, Swied G, Alkhaled B. Iran J. Med. Sci. 2013, 38, 334–338.Suche in Google Scholar
[19] Saloum S, Naddaf M. Vacuum 2007, 82, 66–71.10.1016/j.vacuum.2007.04.031Suche in Google Scholar
[20] Abdallah B, Mrad O, Ismail IM. Acta Phys. Pol., A 2013, 123, 76.10.12693/APhysPolA.123.76Suche in Google Scholar
[21] Fairely N. “CasaXPS Manual 2.3.16”, Casa Software Ltd., 2009.Suche in Google Scholar
[22] Wagner CD, Riggs WM, Davis WE, Moulder JF, Muilenberg GE. “Handbook of X-ray photoelectron spectroscopy: a reference book of standard data for use in X-ray photoelectron spectroscopy”, Eden Prairie, Minn.: Physical Electronics Division, Perkin-Elmer Corporation, 1979.Suche in Google Scholar
[23] Moulder JF, Stickle WF, Sobol PE, Bomben KD. “Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data”, Physical Electronics Division, Perkin-Elmer Corporation, 1992.Suche in Google Scholar
[24] Drnovská H, Lapčík L, Buršíková V, Zemek J, Barros-Timmons A. Colloid Polym. Sci. 2003, 281, 1025–1033.10.1007/s00396-003-0871-8Suche in Google Scholar
[25] Cheng C, Liye Z, Zhan R-J. Surf. Coat. Technol. 2006, 200, 6659–6665.10.1016/j.surfcoat.2005.09.033Suche in Google Scholar
[26] Pandiyaraj KN, Selvarajan V, Deshmukh RR, Bousmina M. Surf. Coat. Technol. 2008, 202, 4218–4226.10.1016/j.surfcoat.2008.03.015Suche in Google Scholar
[27] Vesel A, Mozetic M, Zalar A. Vacuum 2007, 82, 248–251.10.1016/j.vacuum.2007.07.021Suche in Google Scholar
[28] Beamson G, Briggs D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database, John Wiley & Sons Ltd.: Chichester, England, 1992.Suche in Google Scholar
[29] Lehocky M, Drnovska H, Lapcikova B, Barros-Timmons AM, Trindade T, Zembala M, Lapcik Jr L. Colloids Surf. Physicochem. Eng. Aspects 2003, 222, 125–131.10.1016/S0927-7757(03)00242-5Suche in Google Scholar
[30] Sanchis MR, Calvo O, Fenollar O, Garcia D, Balart R. Polym. Test. 2008, 27, 25.10.1016/j.polymertesting.2007.09.002Suche in Google Scholar
[31] Weibel DE, Vilani C, Habert AC, Achete CA. Surf. Coat. Technol. 2006, 201, 4190–4194.10.1016/j.surfcoat.2006.08.050Suche in Google Scholar
[32] Gerenser LJ. J. Adhes. Sci. Technol. 1993, 7, 1019–1040.10.1163/156856193X00556Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Chemical and biological effects of low pressure N2-O2 plasma setup on polymeric materials
- Effect of aging conditions on the mechanical properties and antimicrobial activity of elastomer nanocomposites
- Creep and dynamic mechanical behavior of cross-linked polyvinyl alcohol reinforced with cotton fiber laminate composites
- Preparation and assembly
- Foam rubber from centrifuged and creamed latex
- Preparation and properties of multi-walled carbon nanotubes and eggshell dual-modified polycaprolactone composite scaffold
- Effectiveness of a coagulation step and polyester support on blend polyvinylchloride membrane formation and performance
- Novel proton exchange membranes based on PVC for microbial fuel cells (MFCs)
- Preparation of graphene-based compounds with improved dispersion by a two-stage production process
- Engineering and processing
- Implementation of partial slip boundary conditions in an open-source finite-volume-based computational library
- Ultrasonic measurement of clamping force for injection molding machine
- Experimental and simulation studies on the mold replicability in the thermoforming process
Artikel in diesem Heft
- Frontmatter
- Material properties
- Chemical and biological effects of low pressure N2-O2 plasma setup on polymeric materials
- Effect of aging conditions on the mechanical properties and antimicrobial activity of elastomer nanocomposites
- Creep and dynamic mechanical behavior of cross-linked polyvinyl alcohol reinforced with cotton fiber laminate composites
- Preparation and assembly
- Foam rubber from centrifuged and creamed latex
- Preparation and properties of multi-walled carbon nanotubes and eggshell dual-modified polycaprolactone composite scaffold
- Effectiveness of a coagulation step and polyester support on blend polyvinylchloride membrane formation and performance
- Novel proton exchange membranes based on PVC for microbial fuel cells (MFCs)
- Preparation of graphene-based compounds with improved dispersion by a two-stage production process
- Engineering and processing
- Implementation of partial slip boundary conditions in an open-source finite-volume-based computational library
- Ultrasonic measurement of clamping force for injection molding machine
- Experimental and simulation studies on the mold replicability in the thermoforming process