Startseite Thin-wall injection molding of high-density polyethylene for infrared radiation system lenses
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thin-wall injection molding of high-density polyethylene for infrared radiation system lenses

  • Ryo Kaneda , Toshihiro Takahashi , Masayasu Takiguchi , Motoharu Hijikata und Hiroshi Ito EMAIL logo
Veröffentlicht/Copyright: 21. Juli 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

High-density polyethylene (HDPE) lenses are used for infrared radiation (IR) systems, such as radiation thermometers to transmit the IR of the 10 μm region. High IR transmittance and low visible ray (VR) transmittance are necessary for IR system lenses. This experimental investigation of thin-wall injection molding was conducted using 0.5 mm cavity thickness with a disk shape, finished to a mirror-like surface. As factors affecting transmittance, we evaluated the thickness, surface roughness, crystallinity, internal structure, and molecular chain orientation of molded parts, which were produced using four HDPE melt flow rates (MFRs). The changed molding conditions were mold temperature and holding pressure. Results showed that the thin-molded parts had higher IR transmittance. The thin-molded part was obtained with the smallest MFR of 5. Furthermore, the VR transmittance decreased when the molecular chain orientation in the molded parts was small and the crystallinity was high. The small orientation and high crystallinity were obtained simultaneously with the largest MFR of 42. Therefore, it was impossible to obtain high IR transmittance and low VR transmittance simultaneously by a change of MFR. This study confirmed that surface roughness and crystallinity do not affect transmittance.

References

[1] Osswald TA, Turng LS, Gramann PJ. Eds., Injection Molding Handbook, Hanser Publisher: Munich, 2002.Suche in Google Scholar

[2] Tohyama S. JSPE 1990, 56, 1967–1970.10.2493/jjspe.56.1967Suche in Google Scholar

[3] Erismann F, Fong H, Graef GL, Risbud SH. J. Appl. Polym. Sci. 1997, 65, 2727–2732.10.1002/(SICI)1097-4628(19970926)65:13<2727::AID-APP14>3.0.CO;2-USuche in Google Scholar

[4] Abdul Manaf AR, Yan J. Precis. Eng. 2016, 43, 429–438.10.1016/j.precisioneng.2015.09.007Suche in Google Scholar

[5] Yokoi H, Han X, Takahashi T, Kim WK. Polym. Eng. Sci. 2006, 46, 1140–1146.10.1002/pen.20519Suche in Google Scholar

[6] Han X, Yokoi H. Polym. Eng. Sci. 2006, 46, 1590–1597.10.1002/pen.20615Suche in Google Scholar

[7] Jansen KMB, Flaman AAM. Polym. Eng. Sci. 1994, 34, 894–897.10.1002/pen.760341105Suche in Google Scholar

[8] Yao D, Kim B. Polym. Eng. Sci. 2002, 42, 2471–2481.10.1002/pen.11133Suche in Google Scholar

[9] Chang PC, Hwang SJ. J. Appl. Polym. Sci. 2006, 102, 3704–3713.10.1002/app.24515Suche in Google Scholar

[10] Yao D, Chung S, Kim B. Adv. Polym. Technol. 2008, 27, 233–255.10.1002/adv.20136Suche in Google Scholar

[11] Wang G, Zhao G, Wang X. Int. J. Heat. Mass Transfer 2014, 78, 99–111.10.1016/j.ijheatmasstransfer.2014.06.062Suche in Google Scholar

[12] Akamatsu M, Mayama T. Plastic Age (Japanese). 2003, 49, 101–103.Suche in Google Scholar

[13] Huang MS, Chung CF. J. Appl. Polym. Sci. 2011, 121, 1151–1159.10.1002/app.33603Suche in Google Scholar

[14] Kantz MR, Newman Jr HD, Stigale FH. J. Appl. Polym. Sci. 1972, 16, 1249–1260.10.1002/app.1972.070160516Suche in Google Scholar

[15] Tan V, Kamal MR. J. Appl. Polym. Sci. 1978, 22, 2341–2355.10.1002/app.1978.070220824Suche in Google Scholar

[16] Kamal MR, Kalyon DM, Dealy JM. Polym. Eng. Sci. 1980, 20, 1117–1125.10.1002/pen.760201702Suche in Google Scholar

[17] Fujiyama M, Wakino T. Int. Polym. Proc. 1992, 7, 97–105.10.3139/217.920097Suche in Google Scholar

[18] Cao W, Wang K, Zhang Q, Du R, Fu Q. Polymer, 2006, 47, 6857–6867.10.1016/j.polymer.2006.07.037Suche in Google Scholar

[19] Hnatkova E, Dvorak Z. Mater. Technol. 2016, 50, 195–198.10.17222/mit.2014.151Suche in Google Scholar

[20] Giboz J, Spoelstra AB, Portale G, Copponnex TH, Meijer E, Peters GW, Mele P. J. Polym. Sci. Part B: Polym. Phys. 2011, 49, 1470–1478.10.1002/polb.22332Suche in Google Scholar

[21] Guo C, Liu FH, Wu X, Liu H, Zhanf J. J. Appl. Polym. Sci. 2012, 126, 452–462.10.1002/app.36698Suche in Google Scholar

[22] Lin X, Rose FC, Ren D, Wang K, Coates P. J. Polym. Res. 2013, 20, 122.10.1007/s10965-013-0122-8Suche in Google Scholar

[23] Kaneda R, Takahashi T, Takiguchi M, Hijikata M, Ito H. Int. Polym. Proc. 2016, 31, 385–392.10.3139/217.3261Suche in Google Scholar

[24] Kaneda R, Takahashi T, Takiguchi M, Hijikata M, Ito H. Int. Polym. Proc. 2017, 32, 237–244.10.3139/217.3333Suche in Google Scholar

[25] Na B, Wang Y, Du RN, Fu Q, Men YF. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 1831–1840.10.1002/polb.20059Suche in Google Scholar

[26] Guan WS, Huang HX, Wang B. J. Polym. Sci. Part B: Polym. Phys. 2013, 51, 358–367.10.1002/polb.23218Suche in Google Scholar

[27] Combessis A, Mazel C, Maugin M, Flandin L. J. Appl. Polym. Sci. 2013, 130, 1778–1786.10.1002/app.39333Suche in Google Scholar

[28] Kaneda R, Takahashi T, Takiguchi M, Hijikata M, Ito H. Polym. Eng. Sci. 2017, in press.Suche in Google Scholar

[29] Jar P-YB, Shanks RA. J. Polym. Sci. Part B: Polym. Phys. 1996, 34, 707–715.10.1002/(SICI)1099-0488(199603)34:4<707::AID-POLB11>3.0.CO;2-LSuche in Google Scholar

[30] Maruhashi Y, Iida S. Polym. Eng. Sci. 2001, 41, 1987–1995.10.1002/pen.10895Suche in Google Scholar

[31] Kawaguchi K. J. Appl. Polym. Sci. 2006, 100, 3382–3392.10.1002/app.23777Suche in Google Scholar

[32] Mileva D, Androsch R, Radusch HJ. Polym. Bull. 2009, 62, 561–571.10.1007/s00289-008-0034-7Suche in Google Scholar

[33] Ahmad Z, Kumar KD, Saroop M, Preschilla N, Biswas A, Bellare JR, Bhowmick AK. Polym. Eng. Sci. 2010, 50, 331–341.10.1002/pen.21540Suche in Google Scholar

[34] Zia Q, Androsch R, Radusch H-J. J. Appl. Polym. Sci. 2010, 117, 1013–1020.10.1002/app.31638Suche in Google Scholar

[35] Santis FD, Pantani R. Sci. World J. 2013, 354093, 1–7.10.1155/2013/354093Suche in Google Scholar

[36] Kolesov I, Mileva D, Androsch R. Polym. Bull. 2014, 71, 581–593.10.1007/s00289-013-1079-9Suche in Google Scholar

Received: 2017-3-3
Accepted: 2017-6-10
Published Online: 2017-7-21
Published in Print: 2018-3-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Material properties
  3. Influence of particle size of isotactic polypropylene (iPP) on barrier property against agglomeration of homogenized microcrystalline cellulose (HMCC) in iPP/HMCC composites
  4. An investigation of the impact of an amino-ended hyperbranched polymer as a new type of modifier on the compatibility of PLA/PBAT blends
  5. Study on the adhesive properties of reactive liquid rubber toughened epoxy-clay hybrid nanocomposites
  6. Morphology, rheology and biodegradation of oxo-degradable polypropylene/polylactide blends
  7. Long term hydrothermal effect on the mechanical and thermo-mechanical properties of carbon nanofiber doped epoxy composites
  8. Long term accelerated aging investigation of an epoxy/silica nanocomposite for high voltage insulation
  9. Mechanical and morphological properties of modified halloysite nanotube filled ethylene-vinyl acetate copolymer nanocomposites
  10. Evaluation of polypropylene hybrid composites containing glass fiber and basalt powder
  11. Preparation and assembly
  12. Ibuprofen loaded nano-ethanolic liposomes carbopol gel system: in vitro characterization and anti-inflammatory efficacy assessment in Wistar rats
  13. Preparation of oriented bacterial cellulose nanofibers by flowing medium-assisted biosynthesis and influence of flowing velocity
  14. Engineering and processing
  15. Thin-wall injection molding of high-density polyethylene for infrared radiation system lenses
  16. Replication of micro-structured injection molds using physical vapor deposition coating and dynamic laser mold tempering
Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2017-0077/html
Button zum nach oben scrollen