Home Long term hydrothermal effect on the mechanical and thermo-mechanical properties of carbon nanofiber doped epoxy composites
Article
Licensed
Unlicensed Requires Authentication

Long term hydrothermal effect on the mechanical and thermo-mechanical properties of carbon nanofiber doped epoxy composites

  • Sunirmal Saha EMAIL logo and Smrutisikha Bal
Published/Copyright: May 20, 2017
Become an author with De Gruyter Brill

Abstract

The influence of water absorption on the mechanical and thermo-mechanical behaviour of carbon nanofibre (CNF) doped epoxy composites was investigated. When immersed in seawater for a long interval of 6 months, all the composite specimens endured saturation whilst weight change of composites was periodically monitored after removal of travelling specimens from a water-beaker. The equilibrium water content and the diffusion coefficient of all composites were evaluated with the help of Fick’s law of diffusion. The results demonstrated a general reduction in flexural modulus and strength, hardness, storage modulus and glass transition temperature (Tg) for seawater exposed specimens due to absorption of seawater as compared to their unexposed specimens. After-effects of water absorption such as plasticisation, swelling of epoxy polymer, interfacial damages and micro-cracks, were marked as the main reasons behind the deterioration of properties. However, among all, the least degradation in properties was observed in the nanocomposite with 0.75 wt.% CNFs loading. Such trivial degradation in properties is due to formation of strong interface of CNFs with the epoxy polymer. The experimental findings were further confirmed by the microstructures of fractured specimens using field emission scanning electron microscopy.

References

[1] Zafar A, Bertocco F, Schjødt-Thomsen J, Rauhe JC. Compos. Sci. Technol. 2012, 72, 656–666.10.1016/j.compscitech.2012.01.010Search in Google Scholar

[2] Ray BC. J. Colloid Interface Sci. 2006, 298, 111–117.10.1016/j.jcis.2005.12.023Search in Google Scholar

[3] Cauich-Cupul JI, Pérez-Pacheco E, Valadez-González A, Herrera-Franco PJ. J. Mater. Sci. 2011, 46, 6664–6672.10.1007/s10853-011-5619-0Search in Google Scholar

[4] Muthirakkal S, Murthy HN, Krishna M, Rai KS, Karippal JJ. Iran. Polym. J. 2010, 19, 89–103.Search in Google Scholar

[5] Xiao GZ, Shanahan ME. J. Polym. Sci. Part B: Polym. Phys. 1997, 35, 2659–2670.10.1002/(SICI)1099-0488(19971130)35:16<2659::AID-POLB9>3.0.CO;2-KSearch in Google Scholar

[6] Costa ML, Almeida SF, Rezende MC. Mater. Res. 2005, 8, 335–340.10.1590/S1516-14392005000300019Search in Google Scholar

[7] Carter HG, Kibler KG. J. Compos. Mater. 1978, 12, 118–131.10.1177/002199837801200201Search in Google Scholar

[8] Camino G, Luda MP, Polishchuk AY, Revellino M, Blancon R, Merle G, Martinez-Vega JJ. Compos. Sci. Technol. 1997, 57, 1469–1482.10.1016/S0266-3538(97)00065-1Search in Google Scholar

[9] Kalfon E, Harel H, Marom G, Drukker E, Green AK, Kressel I. Polym. Compos. 2005, 26, 770–777.10.1002/pc.20155Search in Google Scholar

[10] Chateauminois A, Chabert B, Soulier JP, Vincent L. Polym. Compos. 1995, 16, 288–296.10.1002/pc.750160405Search in Google Scholar

[11] Pomies F, Carlsson LA. J. Compos. Mater. 1994, 28, 22–35.10.1177/002199839402800102Search in Google Scholar

[12] Adams DF. Proc. Am. Soc. Compos. lst Tech. Conf., Technomic Publishing: Dayton, 1986, p 207.Search in Google Scholar

[13] Al-Saleh MH, Sundararaj U. Carbon 2009, 47, 2.10.1016/j.carbon.2008.09.039Search in Google Scholar

[14] Al-Saleh MH, Sundararaj U. Compos. Part A 2011, 42, 2126–2142.10.1016/j.compositesa.2011.08.005Search in Google Scholar

[15] Bal S. Mater. Des. 2010, 31, 2406–2413.10.1016/j.matdes.2009.11.058Search in Google Scholar

[16] Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Pötschke P. Carbon 2004, 42, 1153–1158.10.1016/j.carbon.2003.12.043Search in Google Scholar

[17] Colloca M, Gupta N, Porfiri M. Compos. Part B 2013, 44, 584–591.10.1016/j.compositesb.2012.02.030Search in Google Scholar

[18] Dimchev M, Caeti R, Gupta N. Mater. Des. 2010, 31, 1332–1337.10.1016/j.matdes.2009.09.007Search in Google Scholar

[19] Bal S, Saha S. J. Polym. Eng. 2017, 37, 633–645.10.1515/polyeng-2016-0121Search in Google Scholar

[20] Bal S, Saha S. High Perform. Polym. 2014, 26, 953–960.10.1177/0954008314535823Search in Google Scholar

[21] Abot JL, Yasmin A, Daniel IM. J. Reinf. Plast. Compos. 2005, 24, 195–207.10.1177/0731684405043548Search in Google Scholar

[22] Pérez-Pacheco E, Cauich-Cupul JI, Valadez-González A, Herrera-Franco PJ. J. Mater. Sci. 2013, 48, 1873–1882.10.1007/s10853-012-6947-4Search in Google Scholar

[23] Grace LR, Altan MC. Compos. Part A 2012, 43, 1187–1196.10.1016/j.compositesa.2012.03.016Search in Google Scholar

[24] Shen CH, Springer GS. J. Compos. Mater. 1976, 10, 2.10.1177/002199837601000101Search in Google Scholar

[25] Srihari S, Revathi A, Rao RM. J. Reinf. Plast. Compos. 2002, 21, 983–991.10.1177/073168402128987644Search in Google Scholar

[26] Prolongo SG, Campo M, Gude MR, Chaos-Morán R, Ureña A. Compos. Sci. Technol. 2009, 69, 349–357.10.1016/j.compscitech.2008.10.018Search in Google Scholar

[27] Mohan TP, Kanny K. Compos. Part A 2011, 42, 385–393.10.1016/j.compositesa.2010.12.010Search in Google Scholar

[28] Becker O, Varley RJ, Simon GP. Eur. Polym. J. 2004, 40, 187–195.10.1016/j.eurpolymj.2003.09.008Search in Google Scholar

[29] Liu W, Hoa SV, Pugh M. Compos. Sci. Technol. 2005, 65, 2364–2373.10.1016/j.compscitech.2005.06.007Search in Google Scholar

[30] Zhao H, Li RK. Compos. Part A 2008, 39, 602–611.10.1016/j.compositesa.2007.07.006Search in Google Scholar

[31] Prolongo SG, Gude MR, Urena A. Compos. Part A 2012, 43, 2169–2175.10.1016/j.compositesa.2012.07.014Search in Google Scholar

[32] Zulfli NM, Bakar AA, Chow WS. J. Reinf. Plast. Compos. 2013, 32, 1715–1721.10.1177/0731684413501926Search in Google Scholar

[33] Shokrieh MM, Esmkhani M, Vahedi F, Shahverdi HR. Iran. Polym. J. 2013, 22, 721–727.10.1007/s13726-013-0170-2Search in Google Scholar

[34] Iwahori Y, Ishiwata S, Sumizawa T, Ishikawa T. Compos. Part A 2005, 36, 1430–1439.10.1016/j.compositesa.2004.11.017Search in Google Scholar

[35] Thomason JL. Composites 1995, 26, 487–498.10.1016/0010-4361(95)96806-HSearch in Google Scholar

[36] Vertuccio L, Sorrentino A, Guadagno L, Bugatti V, Raimondo M, Naddeo C, Vittoria V. J. Polym. Res. 2013, 20, 1–3.10.1007/s10965-013-0178-5Search in Google Scholar

[37] Abacha N, Kubouchi M, Tsuda K, Sakai T. Express. Polym. Lett. 2007, 1, 364–369.10.3144/expresspolymlett.2007.51Search in Google Scholar

[38] Buehler FU, Seferis JC. Compos. Part A 2000, 31, 741–748.10.1016/S1359-835X(00)00036-1Search in Google Scholar

[39] Hossain MK, Imran KA, Hosur MV, Jeelani S. J. Eng. Mater. Technol. 2011, 133, 041004.10.1115/1.4004691Search in Google Scholar

[40] Anter FH, Hasan HS. J. Univ. Anbar Pure Sci. 2011, 5. ISSN: 1991-8941.Search in Google Scholar

[41] Goertzen WK, Kessler MR. Compos. Part B 2007, 38, 1–9.10.1016/j.compositesb.2006.06.002Search in Google Scholar

[42] Jyoti J, Singh BP, Arya AK, Dhakate SR. RSC Adv. 2016, 6, 3997–4006.10.1039/C5RA25561ASearch in Google Scholar

[43] Shaffer MSP, Windle AH. Adv. Mater. 1999, 11, 937–941.10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9Search in Google Scholar

[44] Choi YK, Sugimoto KI, Song SM, Gotoh Y, Ohkoshi Y, Endo M. Carbon 2005, 43, 2199–2208.10.1016/j.carbon.2005.03.036Search in Google Scholar

[45] Faulstich de Paiva JM, Frollini E. Macromol. Mater. Eng. 2006, 291, 405–417.10.1002/mame.200500334Search in Google Scholar

[46] Jawaid M, Khalil HA, Hassan A, Dungani R, Hadiyane A. Compos. Part B 2013, 45, 619–624.10.1016/j.compositesb.2012.04.068Search in Google Scholar

[47] Chen X, Wang J, Lin M, Zhong W, Feng T, Chen X, Chen J, Xue F. Mater. Sci. Eng. A 2008, 492, 236–242.10.1016/j.msea.2008.04.044Search in Google Scholar

[48] Salam MB, Hosur MV, Zainuddin S, Jeelani S. OJCM 2013, 3, 1–9.10.4236/ojcm.2013.32A001Search in Google Scholar

[49] Kuzak SG, Shanmugam A. J. Appl. Polym. Sci. 1999, 73, 649–658.10.1002/(SICI)1097-4628(19990801)73:5<649::AID-APP5>3.0.CO;2-BSearch in Google Scholar

[50] Zhou J, Lucas JP. Polymer 1999, 40, 5513–5522.10.1016/S0032-3861(98)00791-5Search in Google Scholar

Received: 2017-2-10
Accepted: 2017-4-7
Published Online: 2017-5-20
Published in Print: 2018-3-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Material properties
  3. Influence of particle size of isotactic polypropylene (iPP) on barrier property against agglomeration of homogenized microcrystalline cellulose (HMCC) in iPP/HMCC composites
  4. An investigation of the impact of an amino-ended hyperbranched polymer as a new type of modifier on the compatibility of PLA/PBAT blends
  5. Study on the adhesive properties of reactive liquid rubber toughened epoxy-clay hybrid nanocomposites
  6. Morphology, rheology and biodegradation of oxo-degradable polypropylene/polylactide blends
  7. Long term hydrothermal effect on the mechanical and thermo-mechanical properties of carbon nanofiber doped epoxy composites
  8. Long term accelerated aging investigation of an epoxy/silica nanocomposite for high voltage insulation
  9. Mechanical and morphological properties of modified halloysite nanotube filled ethylene-vinyl acetate copolymer nanocomposites
  10. Evaluation of polypropylene hybrid composites containing glass fiber and basalt powder
  11. Preparation and assembly
  12. Ibuprofen loaded nano-ethanolic liposomes carbopol gel system: in vitro characterization and anti-inflammatory efficacy assessment in Wistar rats
  13. Preparation of oriented bacterial cellulose nanofibers by flowing medium-assisted biosynthesis and influence of flowing velocity
  14. Engineering and processing
  15. Thin-wall injection molding of high-density polyethylene for infrared radiation system lenses
  16. Replication of micro-structured injection molds using physical vapor deposition coating and dynamic laser mold tempering
Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2017-0037/html
Scroll to top button