Home Evaluation of polypropylene hybrid composites containing glass fiber and basalt powder
Article
Licensed
Unlicensed Requires Authentication

Evaluation of polypropylene hybrid composites containing glass fiber and basalt powder

  • Mateusz Barczewski EMAIL logo , Danuta Matykiewicz , Olga Mysiukiewicz and Paweł Maciejewski
Published/Copyright: August 12, 2017
Become an author with De Gruyter Brill

Abstract

Polypropylene composites filled with inorganic fillers are widely used due to their good mechanical and thermal properties. The modification efficiency of filler incorporated into thermoplastic polymer strongly depends on its shape and dimension. Therefore, the development of novel hybrid composites modified with particle and fibrous shaped fillers expands the range of thermoplastic composite applications. This work investigates the influence of glass fiber and basalt powder and their shape on the mechanical properties of polypropylene-based composites. Mechanical properties of hybrid composites were evaluated using static tensile test, impact resistance, and hardness measurements. The thermomechanical stability of the materials was evaluated via dynamic mechanical thermal analysis. Results indicated that the incorporation of inorganic fillers significantly improved the composite sample stiffness at a wide range of temperatures. The research was complemented with structure investigations realized using scanning electron microscopy. Moreover, the incorporation of basalt powder, which is well known for its low friction coefficient, improved the processing properties, as proven by the melt flow index test.

Acknowledgements

This work was supported by the Ministry of Science and Higher Education in Poland under grant No. 02/25/DSPB/4310.

References

[1] Leong YW, Mohd Ishak ZA, Ariffin A. J. Appl. Polym. Sci. 2004, 91, 3327–3333.10.1002/app.13543Search in Google Scholar

[2] Jančář J. J. Mater. Sci. 1989, 24, 4268–4274.10.1007/BF00544498Search in Google Scholar

[3] Jilkén L, Mälhammar G, Seldén R. Polym. Test. 1991, 10, 329–344.10.1016/0142-9418(91)90011-LSearch in Google Scholar

[4] Kloziński A. Polimery 2016, 11–12, 788–798.10.14314/polimery.2016.788Search in Google Scholar

[5] Zatorski W, Sałasińska K. Polimery 2016, 11–12, 815–823.10.14314/polimery.2016.815Search in Google Scholar

[6] Ambrożewicz D, Jakubowska P, Kloziński A, Nowacka M, Dudziec B, Andrzejewska E, Jesionowski T, Marciniec B. Pol. J. Chem. Technol. 2014, 15, 42–48.10.2478/pjct-2013-0066Search in Google Scholar

[7] Palutkiewicz P, Postawa P. J. Cell. Plast. 2016, 52, 399–418.10.1177/0021955X15576238Search in Google Scholar

[8] Sancaktar E, Walker E. J. Appl. Polym. Sci. 2004, 94, 1986–1998.10.1002/app.21102Search in Google Scholar

[9] Palutkiewicz P, Garbacz T. Cell. Polym. 2016, 35, 159–192.10.1177/026248931603500401Search in Google Scholar

[10] Paszkiewicz S, Pawelec I, Szymczyk A, Rosłaniec Z. Polimery 2016, 61, 172–180.10.14314/polimery.2016.172Search in Google Scholar

[11] Akinci A, Yilmaz S, Sen U. Appl. Compos. Mater. 2012, 19, 499–511.10.1007/s10443-011-9208-9Search in Google Scholar

[12] Botev M, Betchev H, Bikiaris D, Panayiotou C. J. Appl. Polym. Sci. 1999, 74, 523–531.10.1002/(SICI)1097-4628(19991017)74:3<523::AID-APP7>3.0.CO;2-RSearch in Google Scholar

[13] Matkó S, Anna P, Marosi G, Szép A, Keszei S, Czigány T, Pölöskei K. Macromol. Symp. 2003, 202, 255–268.10.1002/masy.200351222Search in Google Scholar

[14] Çalişkan M, Akinci A, Yilmaz Ş, Şen U. Sci. Res. Essays 2011, 6, 2315–2324.Search in Google Scholar

[15] Todic A, Nedeljkovic B, Cikara D, Ristovic I. Mater. Design 2011, 32, 1677–1683.10.1016/j.matdes.2010.09.023Search in Google Scholar

[16] Deng S, Tang Y. J. Reinf. Plast. Comp. 2010, 29, 3133–3148.10.1177/0731684410367535Search in Google Scholar

[17] Andrzejewski J, Tutac N, Szostak M. J. Appl. Polym. Sci. 2016, 133, 43283.10.1002/app.43283Search in Google Scholar

[18] Andrzejewski J, Szostak M, Bak T, Trzeciak M. J. Thermoplast. Compos. 2016, 29, 1194–1209.10.1177/0892705714563117Search in Google Scholar

[19] Drubetski M, Siegmann A, Narkis M. Polym. Composite 2005, 26, 454–464.10.1002/pc.20116Search in Google Scholar

[20] Saba N, Md Tahir P, Jawaid M. Polymers 2014, 6, 2247–2273.10.3390/polym6082247Search in Google Scholar

[21] Rahman NA, Hassan A, Yahya R, Lafia-Araga RA, Hornsby PR. J. Reinf. Plast. Comp. 2012, 31, 1247–1257.10.1177/0731684412456445Search in Google Scholar

[22] Wunderlich B. Macromolecular Physics, vol. 3. Academic Press: New York, 1980.Search in Google Scholar

[23] Onuegbu GC, Igwe IO. Mater. Sci. Appl. 2011, 2, 811–817.Search in Google Scholar

[24] Thomason JL, Vlug MA. Compos. Part A-Appl. S. 1996, 27, 477–484.10.1016/1359-835X(95)00065-ASearch in Google Scholar

[25] Svehlova V, Poloucek E. Angew. Makromol. Chem. 1987, 153, 197–200.10.1002/apmc.1987.051530115Search in Google Scholar

[26] Boyd RH, Polym. Eng. Sci. 1979, 19, 1010–1016.10.1002/pen.760191408Search in Google Scholar

[27] Brostow W, Hagg Lobland HE, Khoja S. Mater. Lett. 2015, 159, 478–480.10.1016/j.matlet.2015.07.047Search in Google Scholar

[28] Brostow W, Hagg Lobland HE, Narkis M. J. Mater. Res. 2006, 21, 2422–2428.10.1557/jmr.2006.0300Search in Google Scholar

[29] Brostow W, Hagg Lobland HE. Chem. Chem. Tech. 2016, 10, 595–600.10.23939/chcht10.04si.595Search in Google Scholar

[30] Karger-Kocis J, Varga J, Ehrenstein GW. J. Appl. Polym. Sci. 1997, 64, 2057–2066.10.1002/(SICI)1097-4628(19970613)64:11<2057::AID-APP1>3.0.CO;2-ISearch in Google Scholar

[31] Aboulfaraj M, G’Sell C, Ulrich B, Dahoun A. Polymer 1995, 36, 731–742.10.1016/0032-3861(95)93102-RSearch in Google Scholar

[32] Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Thermochim. Acta. 2005, 427, 117–128.10.1016/j.tca.2004.09.001Search in Google Scholar

Received: 2017-1-9
Accepted: 2017-6-12
Published Online: 2017-8-12
Published in Print: 2018-3-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Material properties
  3. Influence of particle size of isotactic polypropylene (iPP) on barrier property against agglomeration of homogenized microcrystalline cellulose (HMCC) in iPP/HMCC composites
  4. An investigation of the impact of an amino-ended hyperbranched polymer as a new type of modifier on the compatibility of PLA/PBAT blends
  5. Study on the adhesive properties of reactive liquid rubber toughened epoxy-clay hybrid nanocomposites
  6. Morphology, rheology and biodegradation of oxo-degradable polypropylene/polylactide blends
  7. Long term hydrothermal effect on the mechanical and thermo-mechanical properties of carbon nanofiber doped epoxy composites
  8. Long term accelerated aging investigation of an epoxy/silica nanocomposite for high voltage insulation
  9. Mechanical and morphological properties of modified halloysite nanotube filled ethylene-vinyl acetate copolymer nanocomposites
  10. Evaluation of polypropylene hybrid composites containing glass fiber and basalt powder
  11. Preparation and assembly
  12. Ibuprofen loaded nano-ethanolic liposomes carbopol gel system: in vitro characterization and anti-inflammatory efficacy assessment in Wistar rats
  13. Preparation of oriented bacterial cellulose nanofibers by flowing medium-assisted biosynthesis and influence of flowing velocity
  14. Engineering and processing
  15. Thin-wall injection molding of high-density polyethylene for infrared radiation system lenses
  16. Replication of micro-structured injection molds using physical vapor deposition coating and dynamic laser mold tempering
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2017-0019/html
Scroll to top button