Startseite Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites

  • Bayram Poyraz EMAIL logo , Ayhan Tozluoğlu , Zeki Candan und Ahmet Demir
Veröffentlicht/Copyright: 27. April 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study reports on the effect of organic polyvinyl alcohol (PVA) and silica matrix on the properties of cellulose-based nanocomposites. Nanofibrillated cellulose was isolated from kraft pulp and treated with Pulpzyme HC 2500 enzyme prior to high-pressure homogenization in order to lower energy consumption. Three nanocomposite films were fabricated via the casting process: nanofibrillated cellulose, nanocellulose-PVA (NC-PVA) and nanocellulose-silica (NC-Si). Chemical characterization and crystallization were determined with FTIR. Thermal stability was investigated with thermogravimetric analysis. Morphological alterations were monitored with scanning electron microscopy. A universal testing machine and dynamic mechanical thermal analysis were used for determination of Young’s and storage moduli. The real and imaginary parts of permittivity and electric modulus were evaluated using an impedance analyzer. Considerable alterations were seen under FTIR. Thermal stability was lower in NC-Si than in NC-PVA due to lower crystallinity. Higher Young’s modulus and storage moduli were observed in NC-PVA than in NC-Si. NC-PVA exhibited a singular relaxation process, while a double relaxation process was seen in NC-Si. Consequently, the nanocomposite film prepared from the organic matrix (NC-PVA) had a mechanical advantage for industrial applications. However, neat NC composite revealed the highest storage modulus and thermal stability.

Acknowledgments

The authors thank TUBITAK (European Cooperation Science in Technology: project no. COST 114O022) for support in this research. They also thank the Istanbul University Research Fund for financial support of this study (project nos. 4806 and 19515).

References

[1] Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A. Angew. Chem. Int. Ed. 2011, 50, 5438–5466.10.1002/anie.201001273Suche in Google Scholar

[2] Lin N, Dufresne A. Eur. Polym. J. 2014, 59, 302–325.10.1016/j.eurpolymj.2014.07.025Suche in Google Scholar

[3] Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Chem. Soc. Rev. 2011, 40, 3941–3994.10.1039/c0cs00108bSuche in Google Scholar

[4] Moraru CI, Panchapakesan CP, Huang Q, Takhistov P, Liu S, Kokini JL. Food Technol-Chicago 2003, 57, 24–29.Suche in Google Scholar

[5] Wuhrmann K, Heuberger A, Mühlethaler K. Experientia 1946, 2, 105–107.10.1007/BF02172568Suche in Google Scholar

[6] Fleming K, Gray D, Matthews S. Chem. Eur. J. 2001, 7, 1831–1835.10.1002/1521-3765(20010504)7:9<1831::AID-CHEM1831>3.0.CO;2-SSuche in Google Scholar

[7] Paakko M, Ankerfors M, Kosonen H, Nykanen A, Lindstrom T. Biomacromolecules 2007, 8, 1934.10.1021/bm061215pSuche in Google Scholar

[8] Saito T, Kumura S, Nishiyama Y, Isogai A. Biomacromolecules 2007, 8, 2485.10.1021/bm0703970Suche in Google Scholar

[9] Turbak AF, Snyder FW, Sandberg KR. J. Appl. Polym. Sci. Appl. Polym. Symp. 1983, 37, 815–827.Suche in Google Scholar

[10] Taniguchi T, Okamura K. Polym. Int. 1998, 47, 291.10.1002/(SICI)1097-0126(199811)47:3<291::AID-PI11>3.0.CO;2-1Suche in Google Scholar

[11] Kim DY, Nishiyama Y, Kuga S. Cellulose 2002, 9, 361–367.10.1023/A:1021140726936Suche in Google Scholar

[12] Bismarck A, Mishra S, Lampke T. In Biopolymers and Biocomposites, Mohanty AK, Misra M, Drzal LT, Eds., CRC Press: Boca Raton, FL, 2005, pp. 37–108.Suche in Google Scholar

[13] Mechanical properties of flax fibers and their composites, Edgars SpƗrninš, Luleå University, October 2006, S-971 87 Luleå, Sweden.Suche in Google Scholar

[14] Dri FL, Hector JLG, Moon RJ, Zavattieri PD. Cellulose 2013, 20, 2703–2718.10.1007/s10570-013-0071-8Suche in Google Scholar

[15] Wu X, Moon RJ, Martini A. Cellulose 2013, 20, 43–55.10.1007/s10570-012-9823-0Suche in Google Scholar

[16] Lu P, Hsieh YL. Carbohyd. Polym. 2010, 82, 329–336.10.1016/j.carbpol.2010.04.073Suche in Google Scholar

[17] Shimazaki Y, Miyazaki Y, Takezawa Y, Nogi M, Abe K, Ifuku S, Yano H. Biomacromolecules 2007, 8, 2976–2978.10.1021/bm7004998Suche in Google Scholar PubMed

[18] Li W, Wu Q, Zhao X, Huang Z, Cao J, Li J, Liu S. Carbohyd. Polym. 2014, 113, 403–410.10.1016/j.carbpol.2014.07.031Suche in Google Scholar PubMed

[19] Cho MJ, Park BD. J Ind. Eng. Chem. 2011, 17, 36–40.10.1016/j.jiec.2010.10.006Suche in Google Scholar

[20] Mathew AP, Oksman K, Pierron D, Harmad MF. Carbohydr. Polym. 2012, 87, 2291–2298.10.1016/j.carbpol.2011.10.063Suche in Google Scholar

[21] Thomas MG, Abraham E, Jyotishkumar P, Maria HJ, Pothen L, Thomas S. Int. J. Biol. Macromol. 2015, 81, 768–777.10.1016/j.ijbiomac.2015.08.053Suche in Google Scholar PubMed

[22] Azizi MAS, Alloin F, Paillet M, Dufresne A. Macromolecules 2004, 37, 4313–4316.10.1021/ma035939uSuche in Google Scholar

[23] Benhamou K, Kaddami H, Magnin A, Dufresne A, Ahmad A. Carbohyd. Polym. 2015, 122, 202–211.10.1016/j.carbpol.2014.12.081Suche in Google Scholar PubMed

[24] Zoppi RA, Gonçalves MC. J. Appl. Polym. Sci. 2002, 84, 2196–2205.10.1002/app.10427Suche in Google Scholar

[25] Wong JCH, Kaymak H, Tingaut P, Brunner S, Koebel MM. Micropor. Mesopor. Mat. 2015, 217, 150–158.10.1016/j.micromeso.2015.06.025Suche in Google Scholar

[26] Didier B, Mercier R, Alberola ND, Bas C. J. Polym. Sci. Pol Phys. 2008, 46, 1891–1902.10.1002/polb.21522Suche in Google Scholar

[27] Xie K, Yu Y, Shi Y. Carbohyd. Polym. 2009, 78, 799–805.10.1016/j.carbpol.2009.06.019Suche in Google Scholar

[28] Kulpinski P. J. Appl. Polym. Sci. 2005, 98, 1793–1798.10.1002/app.22279Suche in Google Scholar

[29] Spirk S, Findenin G, Doliska A, Reichel V, Swanson NL, Kargl R, Ribitsch V, Stana-Kleinschek K. Carbohyd. Polym. 2013, 93, 285–290.10.1016/j.carbpol.2012.04.030Suche in Google Scholar PubMed

[30] Chang XF, Luukkonen A, Olson J, Beatson R. BioRes. 2016, 11, 2030–2042.10.15376/biores.11.1.2030-2042Suche in Google Scholar

[31] Poletto M, Pistor V, Zattera AJ. Materials 2014, 7, 6105–6119.10.3390/ma7096105Suche in Google Scholar PubMed PubMed Central

[32] Abraham E, Deepa B, Pothen LA, Cintil J, Thomas S, John MJ, Anandjiwala R, Narine SS. Carbohyd. Polym. 2013, 92, 1477–1483.10.1016/j.carbpol.2012.10.056Suche in Google Scholar PubMed

[33] Le D, Kongparakul S, Smart C, Phanthong P, Karnjanakom S, Abudula A, Guan G. Carbohyd. Polym. 2016, 153, 266–274.10.1016/j.carbpol.2016.07.112Suche in Google Scholar PubMed

[34] Carrilo F, Colom X, Sunol J, Saurina J. Eur. Polym. J. 2004, 40, 2229–2234.10.1016/j.eurpolymj.2004.05.003Suche in Google Scholar

[35] Ang TN, Ngoh GC, Chua ASM, Lee MG. Biotechnol. Biofuels 2012, 5, 67–77.10.1186/1754-6834-5-67Suche in Google Scholar PubMed PubMed Central

[36] Keshk SM, Hamdy MS, Badr IH. Am. J. Polym. Sci. 2015, 5, 24–29.Suche in Google Scholar

[37] Heidari A, Younesi H, Meharaban Z. Chem. Eng. J. 2009, 153, 70–79.10.1016/j.cej.2009.06.016Suche in Google Scholar

[38] Popescu MC, Popescu CM, Lisa G, Sakata Y. J. Mol. Struct. 2011, 988, 65–72.10.1016/j.molstruc.2010.12.004Suche in Google Scholar

[39] Chen H, Wang Y. Ceram. Int. 2002, 28, 54.10.1016/S0272-8842(02)00075-5Suche in Google Scholar

[40] Luduena L, Fasce D, Alvarez VA, Stefani PM. BioResources 2011, 6, 1440–1454.10.15376/biores.6.2.1440-1453Suche in Google Scholar

[41] Grüneberger F, Künniger T, Zimmermann T, Arnold M. J. Mater. Sci. 2014, 49, 6437–6448.10.1007/s10853-014-8373-2Suche in Google Scholar

[42] Zimmerman T, Pohler E, Geiger T. Adv. Eng. Mate. 2004, 6, 754–761.10.1002/adem.200400097Suche in Google Scholar

[43] Kakroodi AR, Cheng S, Sain M, Asiri A. J. Nanomater. 2014, 2014, 903498.Suche in Google Scholar

[44] Zuo PP, Feng HF, Xu ZZ, Zhang LF, Zhang YL, Xia W, Zhang WQ. Chem. Cent. J. 2013, 7, 39.10.1186/1752-153X-7-39Suche in Google Scholar

[45] Dufresne A, Cavaille JY, Vignon MR. J. Appl. Polym. Sci. 1997, 64, 1185–1194.10.1002/(SICI)1097-4628(19970509)64:6<1185::AID-APP19>3.0.CO;2-VSuche in Google Scholar

[46] Yano H, Nakahara S. J. Mater. Sci. 2004, 39, 1635–1638.10.1023/B:JMSC.0000016162.43897.0aSuche in Google Scholar

[47] Henriksson M, Berglund LA. J. Appl. Polym. Sci. 2007, 106, 2817–2824.10.1002/app.26946Suche in Google Scholar

[48] Luo Q, Li Y, Pan L, Song L, Yang J, Wu L, Lu S. J. Mater. Sci. 2016, 51, 8888–8899.10.1007/s10853-016-0136-9Suche in Google Scholar

[49] Wu W, Dong Z, He J, Yu J, Zhong J. J. Mater. Sci. 2016, 51, 4125–4133.10.1007/s10853-016-9735-8Suche in Google Scholar

[50] Kyritsis A, Pissis P, Grammmatikakis J. J. Polym. Sci. Pol. Phys. 33, 1995, 1737–1750.10.1002/polb.1995.090331205Suche in Google Scholar

[51] Szu SP, Lin CY. Mater. Chem. Phys. 2003, 82, 295–300.10.1016/S0254-0584(03)00220-7Suche in Google Scholar

[52] Prabakar K, Narayandass SK, Mangalaraj D. Phys. Stat. Sol. 2003, 199, 507–514.10.1002/pssa.200306628Suche in Google Scholar

[53] Abdel KMM, Elzayat MY, Hammad TR, Aboud AI, Abdel-monem H. Phys. Scr. 2011, 83, 035705.10.1088/0031-8949/83/03/035705Suche in Google Scholar

[54] Sattar AA, Rahman SA. Phys. Stat. Sol. 2003, 200, 415–422.10.1002/pssa.200306663Suche in Google Scholar

[55] Maurya D, Kumar J, Shripal J. Phys. Chem. Solids 2005, 66, 1614.10.1016/j.jpcs.2005.05.080Suche in Google Scholar

[56] Maity S, Bhattacharya D, Ray SK. J. Phys. D Appl. Phys. 2011, 44, 095403.10.1088/0022-3727/44/9/095403Suche in Google Scholar

[57] Matheswaran P, Sathyamoorthy R, Saravanakumar R, Velumani S. Mater. Sci. Eng. B 2010, 174, 269.10.1016/j.mseb.2010.03.008Suche in Google Scholar

[58] Panda RK, Mudulli R, Kar SK, Behera D. J. Alloys Compd. 2014, 615, 899.10.1016/j.jallcom.2014.07.031Suche in Google Scholar

[59] Huang LC, Fu CM, Lee CW, Sun AC. Curr. Appl Phys. 2014, 14, 122.10.1016/j.cap.2013.08.021Suche in Google Scholar

[60] Pati B, Sutar BC, Parida BN, Da PR, Choudhary RNP. J. Mater. Sci. Mater. Electron. 2013, 24, 2043.10.1007/s10854-012-1054-5Suche in Google Scholar

[61] Kim JS, Lee HJ, Lee SY, Kim IW, Lee SD. Thin Solid Films 2010, 518, 6390.10.1016/j.tsf.2010.02.078Suche in Google Scholar

Received: 2017-1-18
Accepted: 2017-2-20
Published Online: 2017-4-27
Published in Print: 2017-11-27

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2017-0022/pdf
Button zum nach oben scrollen