Fabrication of random and aligned-oriented cellulose acetate nanofibers containing betamethasone sodium phosphate: structural and cell biocompatibility evaluations
Abstract:
The objective of this work was to prepare electrospun cellulose acetate (CA) nanofibers containing betamethasone sodium phosphate (BSP). Two different morphologies including random and aligned orientations were rationally designed to improve the performance of samples in in vitro experiments. By comparing the CA nanofibrous samples with randomly and aligned-oriented morphologies, the scanning electron microscopy images showed that the neat aligned-oriented nanofibers with an average diameter of 180±15 nm could be obtained using a high-speed rotating collector. Subsequently, the tensile test confirmed that the aligned CA nanofibers had higher mechanical properties than that of the randomly oriented ones. Moreover, the BSP release profile obtained by UV-vis spectrophotometry depicted that the aligned samples had an initial burst release of BSP followed by a slow penetration of the drug with a gentle slope during 72 h. Furthermore, the ultimate amounts of BSP released from the random and aligned CA nanofibers into the phosphate buffer solution were 63% and 53%, respectively. Finally, human adipose-derived mesenchymal stem cells were seeded on both aligned and random electrospun CA nanofibrous samples containing BSP. The thiazolyl blue and hematoxylin and eosin staining results showed that the BSP-loaded nanofibers with the aligned morphology provided the most suitable environment for the cells’ growth, viability, and proliferation.
References
[1] Ghasemnejad M, Ahmadi E, Mohamadnia Z, Doustgani A, Hashemikia S. Mat. Sci. Eng. C-Mater. 2015, 56, 223–232.10.1016/j.msec.2015.06.012Search in Google Scholar PubMed
[2] Giahi M, Farajpour G, Taghavi H, Shokri S. Russ. J. Phys. Chem. A 2014, 88, 1241–1247.10.1134/S0036024414070164Search in Google Scholar
[3] Ishihara T, Izumo N, Higaki M, Shimada E, Hagi T, Mine L, Ogawa Y, Mizushima Y. J. Control. Release 2005, 105, 68–76.10.1016/j.jconrel.2005.02.026Search in Google Scholar PubMed
[4] Higaki M, Ishihara T., Izumo N, Takatsu M, Mizushima Y. Ann. Rheum. Dis. 2005, 64, 1132–1136.10.1136/ard.2004.030759Search in Google Scholar PubMed PubMed Central
[5] Dhakate SR, Singla B, Uppal M, Mathur RB. Adv. Mater. Lett. 2010, 1, 200–204.10.5185/amlett.2010.8148Search in Google Scholar
[6] Edwards A, Jarvis D, Hopkins T, Pixley S, Bhattarai N. J. Biomed. Mater. Res. B: Appl. Biomater. 2015, 103, 21–30.10.1002/jbm.b.33172Search in Google Scholar PubMed
[7] Kai D, Jiang S, Low ZW, Loh XJ. J. Mater. Chem. B 2015, 3, 6194–6204.10.1039/C5TB00765HSearch in Google Scholar
[8] Sharma Y, Tiwari A, Hattori S, Terada D, Sharma AK, Ramalingam M, Kobayashi H. Int. J. Biol. Macromol. 2012, 51, 627–631.10.1016/j.ijbiomac.2012.06.014Search in Google Scholar PubMed
[9] Konwarh R, Karak N, Misra M. Biotechnol. Adv. 2013, 31, 421–437.10.1016/j.biotechadv.2013.01.002Search in Google Scholar PubMed
[10] Saranya R, Arthanareeswaran G, Ismail AF, Dionysiou DD, Paul D. RSC Adv. 2015, 5, 62486–62497.10.1039/C5RA06948CSearch in Google Scholar
[11] Saranya R, Thuyavan YL, Arthanareeswaran G. J. Teknol. 2014, 70, 1–5.10.11113/jt.v70.3425Search in Google Scholar
[12] Barnthip N, Muakngam A. J. Bionanosci. 2014, 8, 313–318.10.1166/jbns.2014.1240Search in Google Scholar
[13] Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS. Carbohydr. Polym. 2014, 102, 884–892.10.1016/j.carbpol.2013.10.070Search in Google Scholar PubMed
[14] Omollo E, Zhang C, Mwasiagi JI, Ncube S. J. Ind. Text. 2016, 45, 716–729.10.1177/1528083714540696Search in Google Scholar
[15] Wen D, Jianhui W, Bing P, Xiaobin Z, Fuwei X, Huimin L, Kejun Z. Contribut. Tobacco Res. 2015, 26, 232–240.10.1515/cttr-2015-0011Search in Google Scholar
[16] Taepaiboon P, Rungsardthong U, Supaphol P. Eur. J. Pharm. Biopharm. 2007, 67, 387–397.10.1016/j.ejpb.2007.03.018Search in Google Scholar PubMed
[17] Tidjarat S, Winotapun W, Opanasopit P, Ngawhirunpat T, Rojanarata T. J. Chromatogr. A 2014, 1367, 141–147.10.1016/j.chroma.2014.09.043Search in Google Scholar PubMed
[18] Ren X, Chen D, Meng X, Tang F, Du A, Zhang L. Colloid. Surface. B 2009, 72, 188–192.10.1016/j.colsurfb.2009.04.003Search in Google Scholar PubMed
[19] Suwantong O, Supaphol P. Applications of Cellulose Acetate Nanofiber Mats, Springer: Heidelberg, 2015, p 355–368.10.1007/978-3-642-45232-1_70Search in Google Scholar
[20] Cardea S, Scognamiglio M, Reverchon E. Mat. Sci. Eng. C-Mater. 2016, 59, 480–487.10.1016/j.msec.2015.10.053Search in Google Scholar PubMed
[21] Zhao Y, Zhu X, Liu H, Luo Y, Wang S, Shen M, Zhu M, Shi X. J. Mater. Chem. B 2014, 2, 7384–7393.10.1039/C4TB01278JSearch in Google Scholar
[22] Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Artif. Organs 2008, 32, 388–397.10.1111/j.1525-1594.2008.00557.xSearch in Google Scholar PubMed
[23] Goonoo N, Bhaw-Luximon A, Rodriguez IA, Wesner D, Schönherr H, Bowlin GL, Jhurry D. Biomater. Sci-UK 2014, 2, 339–351.10.1039/C3BM60211GSearch in Google Scholar
[24] Hodde D, Gerardo-Nava J, Wöhlk V, Weinandy S, Jockenhövel S, Kriebel A, Altinova H, Steinbusch HWM, Möller M, Weis J. Eur. J. Neurosci. 2016, 43, 376–387.10.1111/ejn.13026Search in Google Scholar PubMed
[25] Tung WT, Tam KW, Chan YS, Kwok LF. Use of Schwann Cell-Seeded Nanofiber as Nerve Conduit. 3D Cell Culture 2014 – Advanced Model Systems, Applications & Enabling Technologies: Freiburg, Germany, 2014.Search in Google Scholar
[26] Prabhakaran MP, Tian L, Hu J, Chen M, Besenbacher F, Ramakrishna S. RSC Adv. 2015, 5, 49838–49848.10.1039/C5RA05773FSearch in Google Scholar
[27] Sridhar S, Venugopal JR, Sridhar R, Ramakrishna S. Colloid. Surface. B 2015, 134, 346–354.10.1016/j.colsurfb.2015.07.019Search in Google Scholar PubMed
[28] Vatankhah E, Prabhakaran MP, Jin G, Mobarakeh LG, Ramakrishna S. J. Biomater. Appl. 2014, 28, 909–921.10.1177/0885328213486527Search in Google Scholar PubMed
[29] Luo Y, Wang S, Shen M, Qi R, Fang Y, Guo R, Cai H, Cao X, Tomás H, Zhu M. Carbohydr. Polym. 2013, 91, 419–427.10.1016/j.carbpol.2012.08.069Search in Google Scholar PubMed
[30] Andalib MN, Lee JS, Ha L, Dzenis Y, Lim JY. Biochem. Biophys. Res. Commun. 2016, 473, 920–925.10.1016/j.bbrc.2016.03.151Search in Google Scholar PubMed PubMed Central
[31] Chew SY, Mi R, Hoke A, Leong KW. Biomaterials 2008, 29, 653–661.10.1016/j.biomaterials.2007.10.025Search in Google Scholar PubMed PubMed Central
[32] Hom S, O’Hara J, Yin W, Rubenstein D. FASEB J. 2015, 29, 792.10.1096/fasebj.29.1_supplement.792.2Search in Google Scholar
[33] Hu J, Tian L, Prabhakaran MP, Ding X, Ramakrishna S. Polymers 2016, 8, 54.10.3390/polym8020054Search in Google Scholar PubMed PubMed Central
[34] Meng ZX, Zheng W, Li L, Zheng YF. Mater. Chem. Phys. 2011, 125, 606–611.10.1016/j.matchemphys.2010.10.010Search in Google Scholar
[35] Mirzaei E, Ai J, Ebrahimi-Barough S, Verdi J, Ghanbari H, Faridi-Majidi R. Mol. Neurobiol. 2015, 53, 4798–4808.10.1007/s12035-015-9410-0Search in Google Scholar PubMed
[36] Ranjbar-Mohammadi M, Prabhakaran MP, Bahrami SH, Ramakrishna S. Carbohydr. Polym. 2016, 140, 104–112.10.1016/j.carbpol.2015.12.012Search in Google Scholar PubMed
[37] Aboutalebi Anaraki N, Roshanfekr Rad L, Irani M, Haririan I. J. Appl. Polym. Sci. 2015, 132, 41286.10.1002/app.41286Search in Google Scholar
[38] Sebe I, Kallai-Szabo B, Zelko R, Szabo D. Curr. Med. Chem. 2015, 22, 604–617.10.2174/0929867321666141106105502Search in Google Scholar PubMed
[39] Shojaei A, Read S, Couch RA, Hodgkins P. Controlled dose drug delivery system. 2014, US8846100 B2.Search in Google Scholar
[40] Tungprapa S, Jangchud I, Supaphol P. Polymer 2007, 48, 5030–5041.10.1016/j.polymer.2007.06.061Search in Google Scholar
[41] Suwantong O, Opanasopit P, Ruktanonchai U, Supaphol P. Polymer 2007, 48, 7546–7557.10.1016/j.polymer.2007.11.019Search in Google Scholar
[42] Kontogiannopoulos KN, Assimopoulou AN, Tsivintzelis I, Panayiotou C, Papageorgiou VP. Int. J. Pharm. 2011, 409, 216–228.10.1016/j.ijpharm.2011.02.004Search in Google Scholar PubMed
[43] Yu DG, Yu JH, Chen L, Williams GR, Wang X. Carbohydr. Polym. 2012, 90, 1016–1023.10.1016/j.carbpol.2012.06.036Search in Google Scholar PubMed
[44] Gouda M, Hebeish AA, Aljafari AI. J. Ind. Text. 2014, 43, 319–329.10.1177/1528083713495250Search in Google Scholar
[45] Castillo-Ortega MM, Nájera-Luna A, Rodríguez-Félix DE, Encinas JC, Rodríguez-Félix F, Romero J, Herrera-Franco PJ. Mat. Sci. Eng. C-Mater. 2011, 31, 1772–1778.10.1016/j.msec.2011.08.009Search in Google Scholar
[46] Absar S, Khan M, Edwards K, Neumann J. J. Polym. Eng. 2015, 35, 867–878.10.1515/polyeng-2015-0057Search in Google Scholar
[47] Zahedi P, Rafie A, Wojczak E. Indian J. Fibre Text. Res. 2016, 41, 13–18.Search in Google Scholar
[48] Vaz C, Van Tuijl S, Bouten C, Baaijens F. Acta Biomater. 2005, 1, 575–582.10.1016/j.actbio.2005.06.006Search in Google Scholar PubMed
[49] Fennessey SF, Farris RJ. Polymer 2004, 45, 4217–4225.10.1016/j.polymer.2004.04.001Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preparation and processing
- Cellulose modification and shaping – a review
- The effect of shear history on urea containing gliadin solutions
- Preparation and characterization of poly(ethylene 2,5-furandicarboxylate/nanocrystalline cellulose composites via solvent casting
- Material properties
- Mechanical properties of natural fibre polymer composites
- Structure and properties of poly(lactic acid)/poly(lactic acid)-α-cyclodextrin inclusion compound composites
- Fabrication of random and aligned-oriented cellulose acetate nanofibers containing betamethasone sodium phosphate: structural and cell biocompatibility evaluations
- Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites
- Engineering
- Bi-layered electrospun nanofibrous polyurethane-gelatin scaffold with targeted heparin release profiles for tissue engineering applications
- Fabrication of porous polymeric structures using a simple sonication technique for tissue engineering
Articles in the same Issue
- Frontmatter
- Preparation and processing
- Cellulose modification and shaping – a review
- The effect of shear history on urea containing gliadin solutions
- Preparation and characterization of poly(ethylene 2,5-furandicarboxylate/nanocrystalline cellulose composites via solvent casting
- Material properties
- Mechanical properties of natural fibre polymer composites
- Structure and properties of poly(lactic acid)/poly(lactic acid)-α-cyclodextrin inclusion compound composites
- Fabrication of random and aligned-oriented cellulose acetate nanofibers containing betamethasone sodium phosphate: structural and cell biocompatibility evaluations
- Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites
- Engineering
- Bi-layered electrospun nanofibrous polyurethane-gelatin scaffold with targeted heparin release profiles for tissue engineering applications
- Fabrication of porous polymeric structures using a simple sonication technique for tissue engineering