Abstract
Currently, a substantial amount of research is devoted to gluten bioplastics. A promising processing route towards composites and films uses solutions of reduced gliadin. The addition of sufficient urea allows the preparation of highly concentrated gliadin solutions without an anomalous rheology. This is investigated in this paper by thixotropy experiments on gliadin solutions. These solutions show a balance between structural build-up due to molecular interactions and structural break-down induced by shear flow. Because of this, such protein solutions should be prepared with great caution. To assure a rheology suitable for processing, a shear history and a sufficient amount of added urea to disrupt molecular interactions are crucial.
Acknowledgments
The authors wish to acknowledge the IWT (SBO-project GlutenHyb) for funding this research. Professor Jan Mewis is acknowledged for stimulating discussions.
References
[1] Veraverbeke WS, Delcour JA. Crit. Rev. Food Sci. Nutr. 2002, 42, 179–208.10.1080/10408690290825510Search in Google Scholar PubMed
[2] Lagrain B, Goderis B, Brijs K, Delcour JA. Biomacromolecules 2010, 11, 533–541.10.1021/bm100008pSearch in Google Scholar PubMed
[3] Pommet M, Redl A, Morel MH, Domenek S, Guilbert S. Macromol. Symp. 2003, 197, 207–218.10.1002/masy.200350719Search in Google Scholar
[4] Bietz J, Lookhart G. Cereal Foods World 1996, 41, 376–382.Search in Google Scholar
[5] Magnuson K. Cereal Foods World 1985, 30, 179–181.Search in Google Scholar
[6] Gupta P, Nayak KK. Polym. Eng. Sci. 2015, 55, 485–498.10.1002/pen.23928Search in Google Scholar
[7] Patni N, Yadava P, Agarwal A, Maroo V. Rev. Chem. Eng. 2014, 30, 421–430.10.1515/revce-2013-0039Search in Google Scholar
[8] Song Y, Zheng Q, Taylor P. Polym. Rev. 2014, 54, 514–571.10.1080/15583724.2014.887097Search in Google Scholar
[9] Langstraat TD, Jansens KJA, Delcour JA, Van Puyvelde O, Goderis B. Ind. Crops Prod. 2014, 72, 119–124.10.1016/j.indcrop.2014.11.058Search in Google Scholar
[10] Jansens KJA, Lagrain B, Brijs K, Goderis B, Smet M, Delcour JA. J. Agric. Food Chem. 2013, 61, 9393–9400.10.1021/jf403156cSearch in Google Scholar PubMed
[11] Martínez I, Partal P, García-Morales M, Guerrero A, Gallegos C. J. Food Eng. 2013, 117, 247–254.10.1016/j.jfoodeng.2013.02.014Search in Google Scholar
[12] Langstraat TD, Jansens KJA, Delcour JA, Verpoest I, Van Puyvelde P, Goderis B. Ind. Crops Prod. 2015, 77, 146–155.10.1016/j.indcrop.2015.08.055Search in Google Scholar
[13] Kluver E, Meyer M. Polym. Eng. Sci. 2014, 55, 1912–1919.10.1002/pen.24032Search in Google Scholar
[14] Jansens KJA, Lagrain B, Rombouts I, Brijs K, Smet M, Delcour JA. J. Cereal Sci. 2011, 54, 434–441.10.1016/j.jcs.2011.08.008Search in Google Scholar
[15] Jansens KJA, Vo Hong N, Telen L, Brijs K, Lagrain B, Van Vuure AW, Van Acker K, Verpoest I, Van Puyvelde P, Goderis B, Smet M, Delcour JA. Ind. Crops Prod. 2013, 44, 480–487.10.1016/j.indcrop.2012.10.006Search in Google Scholar
[16] Telen L, Jansens KJA, Verpoest I, Delcour JA, Van Puyvelde P, Goderis B. Ind. Crops Prod. 2015, 74, 824–838.10.1016/j.indcrop.2015.06.005Search in Google Scholar
[17] Vo Hong N, Pyka G, Wevers M, Goderis B, Van Puyvelde P, Verpoest I, Van Vuure AW. Compos. Part A Appl. Sci. Manuf. 2015, 79, 74–81.10.1016/j.compositesa.2015.09.006Search in Google Scholar
[18] Roy S, Weller CL, Gennadios A, Zeece MG, Testin RF. J. Food Sci. 1999, 64, 57–60.10.1111/j.1365-2621.1999.tb09860.xSearch in Google Scholar
[19] Hua L, Zhou R, Thirumalai D, Berne BJ. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 16928–16933.10.1073/pnas.0808427105Search in Google Scholar PubMed PubMed Central
[20] Wallqvist A, Covell DG, Thirumalai D. J. Am. Chem. Soc. 1998, 120, 427–428.10.1021/ja972053vSearch in Google Scholar
[21] Sun S, Song Y, Zheng Q. Food Hydrocoll. 2008, 22, 1090–1096.10.1016/j.foodhyd.2007.06.006Search in Google Scholar
[22] Sun S, Song Y, Zheng Q. Food Hydrocoll. 2009, 23, 1054–1056.10.1016/j.foodhyd.2008.04.002Search in Google Scholar
[23] English RJ. J. Rheol. (N. Y. N. Y). 1997, 41, 427.10.1122/1.550807Search in Google Scholar
[24] English RJ, Raghavan SR, Jenkins RD, Khan SA. J. Rheol. (N. Y. N. Y). 1999, 43, 1175.10.1122/1.551026Search in Google Scholar
[25] Mewis J, Kaffashi B, Vermant J, Butera RJ. Macromolecules 2001, 34, 1376–1383.10.1021/ma000987pSearch in Google Scholar
[26] Reddy N, Yang Y. Biomacromolecules 2007, 8, 638–643.10.1021/bm0608840Search in Google Scholar PubMed
[27] Li Y, Reddy N, Yang Y. Polym. Int. 2008, 57, 1174–1181.10.1002/pi.2461Search in Google Scholar
[28] Reddy N, Yang Y. J. Mater. Sci. Mater. Med. 2008, 19, 2055–2061.10.1007/s10856-007-3294-0Search in Google Scholar PubMed
[29] Lagrain B, Rombouts I, Brijs K, Delcour JA. J. Agric. Food Chem. 2011, 59, 2034–2039.10.1021/jf104201uSearch in Google Scholar PubMed
[30] Laschet M, Plog JP, Clasen C, Kulicke WM. Colloid Polym. Sci. 2004, 282, 373–380.10.1007/s00396-003-0949-3Search in Google Scholar
[31] Annable T. J. Rheol. (N. Y. N. Y). 1993, 37, 695.10.1122/1.550391Search in Google Scholar
[32] Berret JF, Séréro Y. Phys. Rev. Lett. 2001, 87, 048303.10.1103/PhysRevLett.87.048303Search in Google Scholar PubMed
[33] Le Meins JF, TassinJF. Macromolecules 2001, 34, 2641–2647.10.1021/ma001324aSearch in Google Scholar
[34] May R, Kaczmarski J, Glass JE. Macromolecules 1996, 29, 4745–4753.10.1021/ma9507655Search in Google Scholar
[35] Elias H. Macromolecules: Physical Structures and Properties. Vol 3, WileyVCH: Weinheim, Germany, 2008.10.1002/9783527627233Search in Google Scholar
[36] Indei T, Takimoto JI. J. Chem. Phys. 2010, 133, 19.10.1063/1.3498779Search in Google Scholar
[37] Ang S, Kogulanathan J, Morris GA, Kök MS, Shewry PR, Tatham AS, Adams GG, Rowe AJ, Harding SE. Eur. Biophys. J. 2010, 39, 255–261.10.1007/s00249-009-0529-7Search in Google Scholar PubMed
[38] Mangavel C, Barbot J, Popineau Y, Guéguen J. J. Agric. Food Chem. 2001, 49, 867–872.10.1021/jf0009899Search in Google Scholar PubMed
[39] Mewis J, Wagner NJ. Adv. Colloid Interface Sci. 2009, 147–148, 214–227.10.1016/j.cis.2008.09.005Search in Google Scholar PubMed
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preparation and processing
- Cellulose modification and shaping – a review
- The effect of shear history on urea containing gliadin solutions
- Preparation and characterization of poly(ethylene 2,5-furandicarboxylate/nanocrystalline cellulose composites via solvent casting
- Material properties
- Mechanical properties of natural fibre polymer composites
- Structure and properties of poly(lactic acid)/poly(lactic acid)-α-cyclodextrin inclusion compound composites
- Fabrication of random and aligned-oriented cellulose acetate nanofibers containing betamethasone sodium phosphate: structural and cell biocompatibility evaluations
- Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites
- Engineering
- Bi-layered electrospun nanofibrous polyurethane-gelatin scaffold with targeted heparin release profiles for tissue engineering applications
- Fabrication of porous polymeric structures using a simple sonication technique for tissue engineering
Articles in the same Issue
- Frontmatter
- Preparation and processing
- Cellulose modification and shaping – a review
- The effect of shear history on urea containing gliadin solutions
- Preparation and characterization of poly(ethylene 2,5-furandicarboxylate/nanocrystalline cellulose composites via solvent casting
- Material properties
- Mechanical properties of natural fibre polymer composites
- Structure and properties of poly(lactic acid)/poly(lactic acid)-α-cyclodextrin inclusion compound composites
- Fabrication of random and aligned-oriented cellulose acetate nanofibers containing betamethasone sodium phosphate: structural and cell biocompatibility evaluations
- Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites
- Engineering
- Bi-layered electrospun nanofibrous polyurethane-gelatin scaffold with targeted heparin release profiles for tissue engineering applications
- Fabrication of porous polymeric structures using a simple sonication technique for tissue engineering