Startseite An investigation of the impact of an amino-ended hyperbranched polymer as a new type of modifier on the compatibility of PLA/PBAT blends
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An investigation of the impact of an amino-ended hyperbranched polymer as a new type of modifier on the compatibility of PLA/PBAT blends

  • Yujuan Jin EMAIL logo , Shuang Men und Yunxuan Weng
Veröffentlicht/Copyright: 12. Juli 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends using amino-ended hyperbranched polymers (HBP) as modifiers were prepared by melt-mixing through a double-roller mill and injection molding. It was found that when the content of HBP was 2.5 phr, the elongation at break and the impact strength of PLA/PBAT blends both reached peak values. Moreover, by addition of HBP, the ΔTg of the blends was smaller. These results, together with Scanning electron microscope (SEM) images on the fractured morphology of the blends, indicate that the compatibility between PLA and PBAT is improved upon addition of HBP. The mechanism of the impact of HBP on the improvement of the compatibility between PLA and PBAT is proposed based upon Fourier transform infrared (FTIR) spectra.

Acknowledgments

The authors thank the National Science Found (project no. 51503007) for financial support. WY acknowledges the National Science Found for the award of a general program (project no. 51473006).

References

[1] Weng Y, Jin Y, Meng Q, Wang L, Zhang M, Wang Y. Polym. Test. 2013, 32, 918–926.10.1016/j.polymertesting.2013.05.001Suche in Google Scholar

[2] Weng Y, Wang L, Zhang M, Wang X, Wang Y. Polym. Test. 2013, 32, 60–70.10.1016/j.polymertesting.2012.09.014Suche in Google Scholar

[3] Weng Y, Wang X, Wang Y. Polym. Test. 2011, 30, 372–380.10.1016/j.polymertesting.2011.02.001Suche in Google Scholar

[4] Weng Y, Wang Y, Wang X, Wang Y. Polym. Test. 2010, 29, 579–87.10.1016/j.polymertesting.2010.04.002Suche in Google Scholar

[5] Xing Z, Chae W, Baek J, Choi M, Jung Y, Kang I. Biomacromolecules 2010, 11, 1248–1253.10.1021/bm1000372Suche in Google Scholar PubMed

[6] Wang X, Liu W, Zhou H, Liu B, Li H, Du Z, Zhang C. Polymer 2013, 54, 5839–5851.10.1016/j.polymer.2013.08.050Suche in Google Scholar

[7] Jašo V, Cvetinov M, Rakic S, Petrovic ZS. J. Appl. Polym. Sci. 2014, 131. DOI:10.1002/APP.41104.10.1002/APP.41104Suche in Google Scholar

[8] Ayana B, Suin S, Khatua BB. Carbohydr. Polym. 2014, 110, 430–439.10.1016/j.carbpol.2014.04.024Suche in Google Scholar PubMed

[9] Zhou J, Yao Z, Zhou C, Wei D, Li S. J. Appl. Polym. Sci. 2014, 131. DOI:10.1002/APP.40773.10.1002/APP.40773Suche in Google Scholar

[10] Canetti M, Cacciamani A, Bertini F. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 1168.10.1002/polb.23544Suche in Google Scholar

[11] Phuong VT, Coltelli MB, Cinelli P, Cifelli M, Verstichel S, Lazzeri A. Polymer 2014, 55, 4498–4513.10.1016/j.polymer.2014.06.070Suche in Google Scholar

[12] Kang H, Qiao B, Wang R, Wang Z, Zhang L, Ma J, Coates P. Polymer 2013, 54, 2450–2458.10.1016/j.polymer.2013.02.053Suche in Google Scholar

[13] Wang T, Ding J, Li J, Liu Y, Hao J. J. Appl. Polym. Sci. 2014, 131, 1.10.1002/app.40776Suche in Google Scholar

[14] Teamsinsungvon A, Ruksakulpiwat Y, Jarukumjorn K. Polym.-Plast. Technol. Eng. 2013, 52, 1362–1367.10.1080/03602559.2013.820746Suche in Google Scholar

[15] Kumar M, Mohanty S, Nayak SK, Rahail Parvaiz M. Bioresour. Technol. 2010, 101, 8406–8415.10.1016/j.biortech.2010.05.075Suche in Google Scholar PubMed

[16] Lin S, Guo W, Chen C, Ma J, Wang B. Mater. Des. 2012, 36, 604–608.10.1016/j.matdes.2011.11.036Suche in Google Scholar

[17] Zhang N, Zeng C, Wang L, Ren J. J. Polym. Environ. 2013, 21, 286–294.10.1007/s10924-012-0448-zSuche in Google Scholar

[18] Mohapatra AK, Mohanty S, Nayak SK. J. Polym. Environ. 2014, 22, 398–408.10.1007/s10924-014-0639-xSuche in Google Scholar

[19] Ma P, Cai X, Zhang Y, Wang S, Dong W, Chen M, Lemstra PJ. Polym. Degrad. Stabil. 2014, 102, 145–151.10.1016/j.polymdegradstab.2014.01.025Suche in Google Scholar

[20] Al-Itry R, Lamnawar K, Maazouz A. Eur. Polym. J. 2014, 58, 90–102.10.1016/j.eurpolymj.2014.06.013Suche in Google Scholar

[21] Dong W, Zou B, Ma P, Liu W, Zhou X, Shi D, Ni Z, Chen M. Polym. Int. 2013, 62, 1783–1794.10.1002/pi.4568Suche in Google Scholar

[22] Fotiadou S, Karageorgaki C, Chrissopoulou K, Karatasos K, Tanis I, Tragoudaras D, Frick B, Anastasiadis SH. Macromolecules 2013, 46, 2842–2855.10.1021/ma302405qSuche in Google Scholar

[23] Smeets NMB. Eur. Polym. J. 2013, 49, 2528–2544.10.1016/j.eurpolymj.2013.05.006Suche in Google Scholar

[24] Jiang S, Yao Y, Chen Q, Chen Y. Macromolecules 2013, 46, 9688–9697.10.1021/ma402095wSuche in Google Scholar

[25] Jin Y, Luo Y, Li G, Li J, Wang Y, Yang R, Lu W. Forensic Sci. Int. 2008, 179, 34–38.10.1016/j.forsciint.2008.04.010Suche in Google Scholar

[26] Huber T, Potschke P, Pompe G, Hassler R, Voit B, Grutke S, Gruber F. Macromol. Mater. Eng. 2000, 280, 33.10.1002/1439-2054(20000801)280:1<33::AID-MAME33>3.0.CO;2-PSuche in Google Scholar

[27] Luo L, Meng Y, Qiu T, Li X. J. Appl. Polym. Sci. 2013, 130, 1064–1073.10.1002/app.39257Suche in Google Scholar

[28] Chen S, Zhang D, Jiang S, Jia D. J. Appl. Polym. Sci. 2012, 123, 3261–3269.10.1002/app.35012Suche in Google Scholar

[29] Ke C, Li J, Fang K, Zhu Q, Zhu J, Yan Q. Polym. Adv. Technol. 2011, 22, 2237–2243.10.1002/pat.1751Suche in Google Scholar

[30] Xu M, Chen Y, Qian L, Wang J, Tang S. J. Appl. Polym. Sci. 2014, 131. DOI:10.1002/app.41006.10.1002/app.41006Suche in Google Scholar

[31] Yin S, Xia Y, Jia Q, Hou ZS, Zhang N. J. Biomater. Sci. Polym. Ed. 2017, 28, 119.10.1080/09205063.2016.1252303Suche in Google Scholar

[32] Rumyantsev M, Kazantsev OA, Kamorina SI, Kamorin DM, Sivokhin AP. J. Mol. Struct. 2016, 1121, 86–92.10.1016/j.molstruc.2016.05.058Suche in Google Scholar

Received: 2016-12-10
Accepted: 2017-6-1
Published Online: 2017-7-12
Published in Print: 2018-3-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Material properties
  3. Influence of particle size of isotactic polypropylene (iPP) on barrier property against agglomeration of homogenized microcrystalline cellulose (HMCC) in iPP/HMCC composites
  4. An investigation of the impact of an amino-ended hyperbranched polymer as a new type of modifier on the compatibility of PLA/PBAT blends
  5. Study on the adhesive properties of reactive liquid rubber toughened epoxy-clay hybrid nanocomposites
  6. Morphology, rheology and biodegradation of oxo-degradable polypropylene/polylactide blends
  7. Long term hydrothermal effect on the mechanical and thermo-mechanical properties of carbon nanofiber doped epoxy composites
  8. Long term accelerated aging investigation of an epoxy/silica nanocomposite for high voltage insulation
  9. Mechanical and morphological properties of modified halloysite nanotube filled ethylene-vinyl acetate copolymer nanocomposites
  10. Evaluation of polypropylene hybrid composites containing glass fiber and basalt powder
  11. Preparation and assembly
  12. Ibuprofen loaded nano-ethanolic liposomes carbopol gel system: in vitro characterization and anti-inflammatory efficacy assessment in Wistar rats
  13. Preparation of oriented bacterial cellulose nanofibers by flowing medium-assisted biosynthesis and influence of flowing velocity
  14. Engineering and processing
  15. Thin-wall injection molding of high-density polyethylene for infrared radiation system lenses
  16. Replication of micro-structured injection molds using physical vapor deposition coating and dynamic laser mold tempering
Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0439/html
Button zum nach oben scrollen