Abstract
Poly(lactic acid) (PLA) was synthesized using a green catalyst, nano-zinc oxide (ZnO). The optimum synthesis conditions of PLA were as follows: a stoichiometric amount of 0.5 wt% of nano-ZnO, polymerization time of 14 h, and polymerization temperature of 170°C. Gel permeation chromatography results showed that the weight-average molecular weight (Mw) of PLA was 13,072 g/mol with a polydispersity index (PDI) of 1.7. Furthermore, PLA-α-cyclodextrin inclusion compounds (PLA-CD-ICs) were prepared by ultrasonic co-precipitation techniques. X-ray diffraction analysis and Fourier transform infrared spectroscopy demonstrated the change in lattice of α-CD from a cage configuration to a tunnel structure and the existence of some physical interactions between α-CD and PLA in the PLA-CD-ICs. To enhance the crystallization properties of PLA, PLA/PLA-CD-IC composites were blended with different contents of PLA-CD-ICs as nucleating agents. The crystallization behavior and comprehensive performance were investigated by differential scanning calorimetry, polarized optical microscopy, tensile testing, dynamic mechanical analysis, and scanning electron microscopy. Compared to PLA, the crystallinities of PLA/PLA-CD-IC composites were increased by 24.0%, 26.3%, 27.3%, and 31.8%. The results of all the analyses proved that PLA-CD-ICs were useful as green organic nucleators and improved the comprehensive performance of PLA materials.
Acknowledgements
Financial support from National Science Foundation of China (51263019) is greatly acknowledged.
References
[1] Elangovan D, Yuzay IE, Selke SEM, Auras R. Polym. Int. 2012, 61, 30–37.10.1002/pi.3186Suche in Google Scholar
[2] Yoo DK, Kim D, Lee DS. Macromol. Res. 2006, 14, 510–516.10.1007/BF03218717Suche in Google Scholar
[3] Gu SY, Yang M, YuT, Ren TB, Ren J. Polym. Int. 2008, 57, 982–986.10.1002/pi.2435Suche in Google Scholar
[4] Deng X, Hao J, Wang C. Biomaterials 2001, 22, 2867–2873.10.1016/S0142-9612(01)00031-XSuche in Google Scholar
[5] Martina M, Hutmacher DW. Polym. Int. 2007, 56, 145–157.10.1002/pi.2108Suche in Google Scholar
[6] Auras R, Harte B, Selke S. Macromol. Biosci. 2004, 4, 835–864.10.1002/mabi.200400043Suche in Google Scholar PubMed
[7] Shih YF, Wang YP, Hsieh CF. J. Polym. Eng. 2011, 31, 13–19.10.1515/polyeng.2011.004Suche in Google Scholar
[8] Li H, Huneault MA. Polymer 2007, 48, 6855–6866.10.1016/j.polymer.2007.09.020Suche in Google Scholar
[9] Pillin I, Montrelay N, Grohens Y. Polymer 2006, 47, 4676–4682.10.1016/j.polymer.2006.04.013Suche in Google Scholar
[10] Lin ZD, Zhang XJ, Shen JC. J. Polym. Eng. 2009, 29, 521–530.10.1515/POLYENG.2009.29.1-3.121Suche in Google Scholar
[11] Souza DHS, Dahmouche K, Andrade CT, Dias ML. Appli. Clay Sci. 2013, 80, 259–266.10.1016/j.clay.2013.04.012Suche in Google Scholar
[12] Chen YH, Yao XY, Gu Q, Pan ZJ. J. Polym. Eng. 2013, 33, 163–171.10.1515/polyeng-2012-0124Suche in Google Scholar
[13] Szejtli J. Chem. Rev. 1998, 98, 1743–1754.10.1021/cr970022cSuche in Google Scholar PubMed
[14] Uekama K, Hirayama F, Irie T. Chem. Rev. 1998, 98, 2045–2076.10.1021/cr970025pSuche in Google Scholar PubMed
[15] Zhou SS, Wang LM, Zhang AP, Lin KD, Liu WP. J. Agric. Food Chem. 2008, 56, 2708–2713.10.1021/jf703635pSuche in Google Scholar PubMed
[16] Uyar T, Rusa CC, Wang X, Rusa M, Hacaloglu J, Tonell AE. J. Polym. Sci. Part B Polym Phys. 2005, 43, 2578–2593.10.1002/polb.20546Suche in Google Scholar
[17] Wenz G, Han BH, Müller A. Chem. Rev. 2006, 106, 782–817.10.1021/cr970027+Suche in Google Scholar PubMed
[18] Dong T, Mori T, Aoyama T, Inoue Y. Carbohyd. Polym. 2010, 80, 387–393.10.1016/j.carbpol.2009.11.036Suche in Google Scholar
[19] He Y, Inoue Y. Biomacromolecules 2003, 4, 1865–1867.10.1021/bm034260vSuche in Google Scholar PubMed
[20] Dong T, Shin KM, Zhu B, Inoue Y. Macromolecules 2006, 39, 2427–2428.10.1021/ma052687jSuche in Google Scholar
[21] Zhang R, Wang YM, Wang KJ, Zheng GQ, Li Q, Sheng CY. Polym. Bull. 2013, 70, 195–206.10.1007/s00289-012-0814-ySuche in Google Scholar
[22] Oliveira T, Botelho G, Alves NM, Mano JF. Colloid Polym. Sci. 2014, 292, 863–871.10.1007/s00396-013-3127-2Suche in Google Scholar
[23] Xie DM, Yang KS, Sun WX. Curr. Appl. Phys. 2007, 7, 15–18.10.1016/j.cap.2006.11.006Suche in Google Scholar
[24] Williamson BR, Tonelli AE. J. Incl. Phenom. Macrocycl. Chem. 2012, 72, 71–78.10.1007/s10847-011-9940-7Suche in Google Scholar
[25] Marangoci N, Farcas A, Pinteala M, Harabagiu V, Simionescu BC, Sukhanova T, Perminova M, Grigoryev A, Gubanova G, Bronnikov S. J. Incl. Phenom. Macrocycl. Chem. 2009, 63, 355–364.10.1007/s10847-008-9529-ySuche in Google Scholar
[26] Girek T. J. Incl. Phenom. Macrocycl. Chem. 2013, 76, 237–252.10.1007/s10847-012-0253-2Suche in Google Scholar
[27] Zheng YY, Zhen WJ. Polym. Mater. Sci. Eng. 2015, 11, 97–102.Suche in Google Scholar
[28] Zhen WJ, Zheng YY. Polym. Adv. Technol. 2016, 5, 606–614.10.1002/pat.3727Suche in Google Scholar
[29] Zhou YF, Song YN, Zhen WJ, Wang WT. Macromol. Res. 2015, 12, 1103–1111.10.1007/s13233-015-3146-6Suche in Google Scholar
[30] Garlotta D. J. Polym. Environ. 2001, 9, 63–84.10.1023/A:1020200822435Suche in Google Scholar
[31] Selvakumar M, Bhat DK, Aggarwal AM, etIyer SP, Sravani G. Physica B (Amsterdam, Neth.) 2010, 405, 2286–2289.10.1016/j.physb.2010.02.028Suche in Google Scholar
[32] Zhang ZH, Yuan Y, Fang YG, Liang LH, Ding HC, Jin LT. Talanta 2007, 73, 523–528.10.1016/j.talanta.2007.04.011Suche in Google Scholar PubMed
[33] Zhang R, Yin PG, Wang N, Guo L. Solid State Sci. 2009, 11, 865–869.10.1016/j.solidstatesciences.2008.10.016Suche in Google Scholar
[34] Huang L, Allen E, Tonelli AE, Polymer 1998, 39, 4857–4865.10.1016/S0032-3861(97)00568-5Suche in Google Scholar
[35] Espartero JL, Rashkov I, Li SM. Macromolecules 1996, 29, 3535–3539.10.1021/ma950529uSuche in Google Scholar
[36] Mazarro R, Gracia I, Rodríguez JF. Polym. Int. 2012, 61, 265–273.10.1002/pi.3182Suche in Google Scholar
[37] Zhang YM, Deng XR, Wang LC, Wei TB. J. Macromol. Sci. Part A 2008, 45, 289–294.10.1080/10601320701863742Suche in Google Scholar
[38] Semsarzadeh MA, Amiri S. Bull. Mater. Sci. 2013, 36, 989–996.10.1007/s12034-013-0571-zSuche in Google Scholar
[39] Rusa CC, Bullions TA, Fox J, Porbeni FE, Wang XW, Tonelli AE. Langmuir 2002, 18, 10016–10023.10.1021/la0262452Suche in Google Scholar
[40] Williamson BR, Krishnaswamy R, Tonelli AE. Polymer 2011, 52, 4517–4527.10.1016/j.polymer.2011.07.043Suche in Google Scholar
[41] Li JY, Mai YY, Yan DY, Chen Q. Colloid Polym. Sci. 2003, 281, 267–274.10.1007/s00396-002-0770-4Suche in Google Scholar
[42] Mano JF. Macromol. Rapid Comm. 2008, 29, 1341–1345.10.1002/marc.200800180Suche in Google Scholar
[43] Song YN, Zhou YF, Zhen WJ. Polymer (Korea) 2015, 39, 261–267.10.7317/pk.2015.39.2.261Suche in Google Scholar
[44] Jiao H, Goh SH, Valiyaveettil S. Macromolecules 2001, 34, 8138–8142.10.1021/ma0110507Suche in Google Scholar
[45] Okumura H, Kawaguchi Y, Harada A. Macromol. Rapid Comm. 2002, 23, 781–785.10.1002/1521-3927(20020901)23:13<781::AID-MARC781>3.0.CO;2-CSuche in Google Scholar
[46] Lu J, Shin ID, Nojima S, Tonelli, AE. Polymer 2000, 41, 5871–5883.10.1016/S0032-3861(99)00773-9Suche in Google Scholar
[47] Papageorgiou GZ, Achilias DS, Nanaki S, Beslikasb T, Bikiaris D. Thermochim. Acta 2010, 511, 129–139.10.1016/j.tca.2010.08.004Suche in Google Scholar
[48] Diao Y, Myerson AS, Hatton TA, Trout BL. Langmuir 2011, 27, 5324–5334.10.1021/la104351kSuche in Google Scholar
[49] Yu Y, Yu YL, Jin MN, Bu HS. Macromol. Chem. Phy. 2000, 201, 1894–1900.10.1002/1521-3935(20000901)201:14<1894::AID-MACP1894>3.0.CO;2-QSuche in Google Scholar
[50] Vogel R, Tändler B, Häussler L, Brunig H. Macromol. Biosci. 2006, 6, 730–736.10.1002/mabi.200600116Suche in Google Scholar
[51] Dong T, He Y, Zhu B, Shin KM, Inoue Y. Macromolecules 2005, 38, 7736–7744.10.1021/ma050826rSuche in Google Scholar
[52] Bikiaris D. Materials 2010, 3, 2884–2946.10.3390/ma3042884Suche in Google Scholar
[53] Hoffman JD, Miller RL. Polymer 1997, 38, 3151–3212.10.1016/S0032-3861(97)00071-2Suche in Google Scholar
[54] Jiao H, Goh SH, Valiyaveettil S. Macromolecules 2002, 35, 1980–1983.10.1021/ma0118163Suche in Google Scholar
[55] Kawai T, Lijima R, Yamamoto Y, Kimura T. Polymer 2002, 43, 7301–7306.10.1016/S0032-3861(02)00690-0Suche in Google Scholar
[56] Singh S, Gupta RK, Ghosh AΚ, Maiti SN. J. Polym. Eng. 2010, 30, 361–376.10.1515/POLYENG.2010.30.5-7.361Suche in Google Scholar
[57] Kuila BK, Nandi AK. Macromolecules 2004, 37, 8577–8584.10.1021/ma0490496Suche in Google Scholar
[58] Sinha Ray S, Bousmina M. Prog. Mater. Sci. 2005, 50, 962–1079.10.1016/j.pmatsci.2005.05.002Suche in Google Scholar
[59] Zhang XF, Liu T, Sreekumar TV, Kumar S, Moor VC, Hauge RH, Smalley R. Nano. Lett. 2003, 3, 1285–1288.10.1021/nl034336tSuche in Google Scholar
[60] Maiti P, Nam PH, Okamoto M, Hasegawa N, Usuki A. Macromolecules 2002, 35, 2042–2049.10.1021/ma010852zSuche in Google Scholar
[61] Kovacs AJ. Adv. Polym. Sci. 1963, 3, 394–508.Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preparation and processing
- Cellulose modification and shaping – a review
- The effect of shear history on urea containing gliadin solutions
- Preparation and characterization of poly(ethylene 2,5-furandicarboxylate/nanocrystalline cellulose composites via solvent casting
- Material properties
- Mechanical properties of natural fibre polymer composites
- Structure and properties of poly(lactic acid)/poly(lactic acid)-α-cyclodextrin inclusion compound composites
- Fabrication of random and aligned-oriented cellulose acetate nanofibers containing betamethasone sodium phosphate: structural and cell biocompatibility evaluations
- Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites
- Engineering
- Bi-layered electrospun nanofibrous polyurethane-gelatin scaffold with targeted heparin release profiles for tissue engineering applications
- Fabrication of porous polymeric structures using a simple sonication technique for tissue engineering
Artikel in diesem Heft
- Frontmatter
- Preparation and processing
- Cellulose modification and shaping – a review
- The effect of shear history on urea containing gliadin solutions
- Preparation and characterization of poly(ethylene 2,5-furandicarboxylate/nanocrystalline cellulose composites via solvent casting
- Material properties
- Mechanical properties of natural fibre polymer composites
- Structure and properties of poly(lactic acid)/poly(lactic acid)-α-cyclodextrin inclusion compound composites
- Fabrication of random and aligned-oriented cellulose acetate nanofibers containing betamethasone sodium phosphate: structural and cell biocompatibility evaluations
- Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites
- Engineering
- Bi-layered electrospun nanofibrous polyurethane-gelatin scaffold with targeted heparin release profiles for tissue engineering applications
- Fabrication of porous polymeric structures using a simple sonication technique for tissue engineering