Startseite Fabrication of chitosan/PEO nanofiber mats with mica by electrospinning
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fabrication of chitosan/PEO nanofiber mats with mica by electrospinning

  • Qi Chen , Zhen Xiang Xin , Prosenjit Saha und Jin Kuk Kim EMAIL logo
Veröffentlicht/Copyright: 17. September 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Chitosan (CS) is an excellent biocompatible natural antibacterial material that has attracted researchers to study its biological applications as artificial tissue scaffolds and wound-healing materials. In this research, CS has been mixed with polyethylene oxide (PEO) and mica at various weight ratios to prepare nanofibers; however, it is found to be a difficult task to prepare the nanofiber using pure CS. The composite in form of nanofibrous mat was prepared with CS/PEO solution and CS/PEO/mica solution using electrospinning. Processing conditions were adjusted to a flow rate of 6 ml/min, with an applied voltage of 27 kV. The distance of capillary tip to target was kept about 10 cm at 25°C with a collector having a speed of 200 rpm. The spinnability of solutions was also evaluated by using both plate and cylinder collectors. The composite mats were analyzed in detail using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), thermogravimetric analysis, and X-ray diffractogram (XRD). SEM photomicrograms indicated that the morphology and diameter of the nanofibers were affected by weight ratio of CS/PEO, concentration of mica, and types of collector. Furthermore, mica was incorporated in the CS/PEO matrix to enhance the specific surface area. Molecular interactions between CS/PEO and mica were investigated using FTIR and XRD.

References

[1] Taylor G. Math. Phys. Sci. 1969, 313, 453–475.10.1098/rspa.1969.0205Suche in Google Scholar

[2] Chen Q, Saha P, Kim NG, Kim JK. J. Polym. Eng. 2015, 35, 53–59.10.1515/polyeng-2014-0124Suche in Google Scholar

[3] Shakeel A, Mudasir A, Saiqa I. J. Applicable Chem. 2014, 3, 493–503.Suche in Google Scholar

[4] Sun K, Li ZH. Express Polym. Lett. 2011, 5, 342–361.10.3144/expresspolymlett.2011.34Suche in Google Scholar

[5] Ohkawa K, Minato KI, Kumagai G, Hayashi S, Yamamoto H. Biomacromolecules 2006, 7, 3291–3294.10.1021/bm0604395Suche in Google Scholar PubMed

[6] Geng XY, Kwon OH, Jang J. Biomaterials 2005, 26, 5427–5432.10.1016/j.biomaterials.2005.01.066Suche in Google Scholar PubMed

[7] Zhou YS, Yang DZ, Chen XM, Xu Q, Lu FM, Nie J. Biomacromolecules 2008, 9, 349–354.10.1021/bm7009015Suche in Google Scholar PubMed

[8] Desai K, Kit K, Li JJ, Zivanovic S. Biomacromolecules 2008, 9, 1000–1006.10.1021/bm701017zSuche in Google Scholar PubMed

[9] Zhang YZ, Su B, Ramakrishna S, Lim CT. Biomacromolecules 2008, 9, 136–141.10.1021/bm701130eSuche in Google Scholar PubMed

[10] Pakravan M, Heuzey MC, Ajji A. Polymer 2011, 52, 4813–4824.10.1016/j.polymer.2011.08.034Suche in Google Scholar

[11] Zhang ZF, Yang DZ, Xu F, Zhang ZP, Yin RX, Nie J. Macromolecules 2009, 42, 5278–5284.10.1021/ma900657ySuche in Google Scholar

[12] Shalumona KT, Anulekha KH, Chennazhia KP, Tamurab H, Naira SV, Jayakumar R. Int. J. Biol. Macromol. 2011, 48, 571–576.10.1016/j.ijbiomac.2011.01.020Suche in Google Scholar PubMed

[13] Wang T, Ji XY, Jin L, Feng ZQ, Wu JH, Zheng J, Wang HY, Xu ZW, Guo LL, He NY. ACS Appl. Mater. Interfaces 2013, 5, 3757–3763.10.1021/am400369cSuche in Google Scholar PubMed

[14] Liu KH, Liu TY, Chen SY, Liu DM. Acta Biomater. 2008, 4, 1038–1045.10.1016/j.actbio.2008.01.012Suche in Google Scholar PubMed

[15] Park JH, Lee HW, Chae DK, Oh W, Yun JD, Deng YL, Yeum JH. Colloid Polym. Sci. 2009, 287, 943–950.10.1007/s00396-009-2050-zSuche in Google Scholar

[16] Zhang YZ, Venugopal JR, Turki A, Ramakrishna S, Su B, Lim CT. Biomaterials 2008, 29, 4314–4322.10.1016/j.biomaterials.2008.07.038Suche in Google Scholar PubMed

[17] Son B, Yeom BY, Song SH, Lee CS, Hwang TS. J. Appl. Polym. Sci. 2009, 111, 2892–2899.10.1002/app.29233Suche in Google Scholar

[18] Bozhilov KN, Xu Z, Dobrzhinetskaya LF, Jin ZM, Green HW. Lithos 2009, 109, 304–313.10.1016/j.lithos.2008.04.003Suche in Google Scholar

[19] ASTM Test Method D5035-06, 2006. Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method).Suche in Google Scholar

[20] Reneker DH, Yarin AL, Fong H, Koombhongse SJ. Appl. Phys. 2000, 87, 4531–4547.10.1063/1.373532Suche in Google Scholar

[21] Supaporn N, Kittichai S, Nuttha T, Suda K. J. Appl. Polym. Sci. 2013, 127, 4927–4938.10.1002/app.37612Suche in Google Scholar

Received: 2015-12-28
Accepted: 2016-8-9
Published Online: 2016-9-17
Published in Print: 2017-5-24

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2015-0542/pdf
Button zum nach oben scrollen