Startseite Conductivity and dielectric analysis of nanocolloidal polypyrrole particles functionalized with higher weight percentage of poly(styrene sulfonate) using the dispersion polymerization method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Conductivity and dielectric analysis of nanocolloidal polypyrrole particles functionalized with higher weight percentage of poly(styrene sulfonate) using the dispersion polymerization method

  • S. Maruthamuthu EMAIL logo , J. Chandrasekaran , D. Manoharan und R. Magesh
Veröffentlicht/Copyright: 19. August 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nanocolloidal polypyrrole/poly(styrene sulfonate) PPy:PSS composites were prepared by dispersion polymerization of pyrrole with 0.5 wt%, 1 wt%, 2.5 wt%, 5 wt%, 10 wt% and 15 wt% of PSS. Higher doping level of PPy was confirmed with increased S/N value of elemental analysis. Morphological variations of PPy composite matrix based on PSS were analyzed in which spherical shaped PPy particles of 20–40 nm were obtained for 1:1 wt% of PPy:PSS. Presence of higher concentration of PSS within the PPy matrix substantially improved its thermal stability. Dielectric properties were investigated using complex impedance analyzer as a function of frequency (50 Hz–5 MHz) and temperature between 30°C and 120°C. PPy, with improved dispersion, showed higher dielectric constant values up to 15 wt% of anionic polyelectrolyte PSS and the dielectric loss varied between 4.7 and 7.9 for different wt% of PSS. AC conductivity (σac) enhanced up to 1:1 wt% of PPy:PSS composite, which is found to be the optimum wt% in this study. DC conductivity was found to decrease after 1:1 wt% of PPy:PSS composite, which is due to excess oxidation, leading to reduced π conjugation of PPy chains. Higher dielectric constant values of composite, with relatively low dielectric loss values, indicate their potential usage in the electric and electronic industry.

References

[1] Srivastava S, Schaefer JL, Yang Z, Tu Z, Archer LA. Adv. Mater. 2014, 26, 201–234.10.1002/adma.201303070Suche in Google Scholar PubMed

[2] Yang C, Mo H, Zang L, Qiu J, You H, Yang X. Fibers Polym. 2014, 15, 2019–2025.10.1007/s12221-014-2019-5Suche in Google Scholar

[3] Zaidi MGH, Thakur A, Agarwal T, Alam S. Iran. Polym. J. 2014, 23, 365–374.10.1007/s13726-014-0234-ySuche in Google Scholar

[4] Jeon SS, Kim C, Ko J, Im SS. J. Mater. Chem. 2011, 21, 8146–815.10.1039/c1jm10112aSuche in Google Scholar

[5] Chen L, Guo CX, Zhang Q, Lei Y, Xie J, Ee S, Guai G, Song Q, Li CM. ACS Appl. Mater. Interfaces 2013, 5, 2047–2052.10.1021/am302938aSuche in Google Scholar PubMed

[6] Su N, Li HB, Yuan SJ, Yi SP, Yin EQ. eXPRESS Polym. Lett. 2012, 6, 697–705.10.3144/expresspolymlett.2012.75Suche in Google Scholar

[7] Ozkazanc E. Synth. Met. 2012, 162, 1016–1023.10.1016/j.synthmet.2012.04.022Suche in Google Scholar

[8] Camposa M, Simoes FR, Pereira EC. Sens. Actuators B 2007, 125, 158–166.10.1016/j.snb.2007.02.001Suche in Google Scholar

[9] Zhang X, Wang S, Lu S, Su J, He T. J. Power Sources 2014, 246, 491–498.10.1016/j.jpowsour.2013.07.098Suche in Google Scholar

[10] Heinze J, Uribe BAF, Ludwigs S. Chem. Rev. 2010, 110, 4724–4771.10.1021/cr900226kSuche in Google Scholar PubMed

[11] Oh EJ, Jang KS, MacDiarmid AG. Synth. Met. 2002, 125, 267–272.10.1016/S0379-6779(01)00384-8Suche in Google Scholar

[12] Kim J, Sohn D, Sung Y, Kim ER. Synth. Me.t 2003, 132, 309–313.10.1016/S0379-6779(02)00462-9Suche in Google Scholar

[13] Shinde SS, Gund GS, Dubal DP, Jambure SB, Lokhande CD. Electrochim. Acta 2014, 119, 1–10.10.1016/j.electacta.2013.10.174Suche in Google Scholar

[14] Andreoli E, Liao DS, Haldar A, Alley NJ, Curran SA. Synth. Met. 2013, 185, 71–78.10.1016/j.synthmet.2013.10.005Suche in Google Scholar

[15] Omastova M, Trchova M, Pionteck J, Prokes J, Stejskal J. Synth. Met. 2004, 143, 153–161.10.1016/j.synthmet.2003.11.005Suche in Google Scholar

[16] Wang PC, Yu JY. React. Funct. Polym. 2012, 72, 311–316.10.1016/j.reactfunctpolym.2012.03.005Suche in Google Scholar

[17] Liu J, Wan M. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 2734–2739.10.1002/1099-0518(20000801)38:15<2734::AID-POLA130>3.0.CO;2-RSuche in Google Scholar

[18] Wu TM, Lin YW. Polymer 2006, 47, 3576–3582.10.1016/j.polymer.2006.03.060Suche in Google Scholar

[19] Wu TM, Lin SH. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 1413–1418.10.1002/polb.20809Suche in Google Scholar

[20] Chen N, Hong L. Eur. Polym. J. 2001, 37, 1027–1035.10.1016/S0014-3057(00)00191-9Suche in Google Scholar

[21] Wu TM, Chang HL, Lin YW. Polym. Int. 2009, 58, 1065–1070.10.1002/pi.2634Suche in Google Scholar

[22] Wu J, Li Q, Fan L, Lan Z, Li P, Lin J, Hao S. J. Power Sources 2008, 181, 172–176.10.1016/j.jpowsour.2008.03.029Suche in Google Scholar

[23] Bouldin R, Ravichandran S, Kokil A, Garhwal R, Nagarajan S, Kumar J, Bruno FF, Samuelson LA, Nagarajan R. Synth. Met. 2011, 161, 1611–1617.10.1016/j.synthmet.2011.05.026Suche in Google Scholar

[24] Cao Y, Smith P, Heeger AJ. Synth. Met. 1992, 48, 91–97.10.1016/0379-6779(92)90053-LSuche in Google Scholar

[25] Cao Y, Qiu J, Smith P. Synth. Met. 1995, 69, 187–190.10.1016/0379-6779(94)02412-RSuche in Google Scholar

[26] Lei J, Cai Z, Martin CR. Synth. Met. 1992, 46, 53–69.10.1016/0379-6779(92)90318-DSuche in Google Scholar

[27] Maruthamuthu S, Chandrasekaran J, Manoharan D, Karthick SN, Kim HJ. J. Appl. Polym. Sci. 2016, 133, 43114.10.1002/app.43114Suche in Google Scholar

[28] Wu TM, Chang HL, Lin YW. Compos. Sci. Technol. 2009, 69, 639–644.10.1016/j.compscitech.2008.12.010Suche in Google Scholar

[29] Qu L, Shi G. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 3170–3177.10.1002/pola.20157Suche in Google Scholar

[30] Ghosh D, Sardara PS, Biswasa M, Mondal A, Mukherjee N. Mater. Chem. Phys. 2010, 123, 9–12.10.1016/j.matchemphys.2010.04.019Suche in Google Scholar

[31] Banerjee S, Kumar A. J. Appl. Phys. 2011, 109, 114313.10.1063/1.3592974Suche in Google Scholar

[32] Sun L, Wang J, Butt HJ, Bonaccurso E. Small 2011, 7, 950–956.10.1002/smll.201100204Suche in Google Scholar

[33] Saafan SA, Nimr MKE, Ghazzawy EHE. J. Appl. Polym. Sci. 2006, 99, 3370–3379.10.1002/app.23054Suche in Google Scholar

[34] Madakbas S, Sen F, Kahraman MV, Dumludag F. Adv. Polym. Tech. 2014 33, 21438–21446.Suche in Google Scholar

[35] Mpoukouvalas K, Wang J, Tilch R, Butt HJ, Wegnera G. J. Appl. Phys. 2009, 106, 063706.10.1063/1.3223324Suche in Google Scholar

[36] Bender K, Gogu E, Hennig I, Schweitzer D, Muenstedt H. Synth. Met. 1987, 18, 85–88.10.1016/0379-6779(87)90858-7Suche in Google Scholar

[37] Mpoukouvalas K, Wang J, Wegner G. ChemPhysChem 2010, 11, 139–148.10.1002/cphc.200900643Suche in Google Scholar PubMed

[38] Yang C, Liu P. React. Funct. Polym. 2010, 70, 726–731.10.1016/j.reactfunctpolym.2010.07.006Suche in Google Scholar

[39] Wang J, Sun L, Mpoukouvalas K, Lienkamp K, Lieberwirth I, Fassbender B, Bonaccurso E, Brunklaus G, Muehlebach A, Beierlein T, Tilch R, Butt HJ, Wegner G. Adv. Mater. 2009, 21, 1137–1141.10.1002/adma.200802787Suche in Google Scholar

[40] Hsu FH, Wu TM. Synth. Met. 2012, 162, 682–687.10.1016/j.synthmet.2012.02.025Suche in Google Scholar

[41] Taunk M, Kapil A, Chand S. Solid State Commun. 2010, 150, 1766–1769.10.1016/j.ssc.2010.07.022Suche in Google Scholar

Received: 2015-7-18
Accepted: 2016-7-4
Published Online: 2016-8-19
Published in Print: 2017-5-24

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2015-0321/html
Button zum nach oben scrollen