Abstract
The effects of some important factors in the initial crystallization process of the solution casting method on the piezoelectricity of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) films were extensively explored. The experimental results revealed that there is an optimal initial crystallization temperature at around 90°C. The slow cooling speed can moderately enhance the degree of crystallinity. The most important finding was that a bilayer crystalline structure caused by an asymmetrical heating pattern can enhance the formation of packed micro-fibrillar morphologies after drawing. These three points can increase the piezoelectricity of the PVDF-HFP films, indicating the increase of the extended-chain crystals (β-phase).
Acknowledgments
This work is partly supported by the Research Funds from National Natural Science Foundation of China (No. 11372104) and Grant-in-Aid for Scientific Research (No. 26289319) from the Japanese Ministry of Education, Culture, Sports, Science and Technology to NH and HF.
References
[1] Kawai H. J. Appl. Phys.1969, 8, 975–976.10.1143/JJAP.8.975Suche in Google Scholar
[2] Fukuda E. IEEE Trans. Ultrason. Ferroelect. Freq. Control. 2000, 47, 1277–1290.10.1109/58.883516Suche in Google Scholar PubMed
[3] Fukuda E. IEEE Trans. Elec. Ins. 2006, 13, 1110–1119.10.1109/TDEI.2006.1714937Suche in Google Scholar
[4] Rao MB, Bhat MR, Murthy CRL, Madhav KV, Asokan S. Proc. of National Seminar on Non-Destructive Evaluation, Hyderabad, 2006.Suche in Google Scholar
[5] Elvin NG, Elvin AA, Spector M. Smart Mater. Struct. 2001, 10, 293–299.10.1088/0964-1726/10/2/314Suche in Google Scholar
[6] Li S, Yuan J, Lipson H. J. Appl. Phys.2011, 109, 026104.10.1063/1.3525045Suche in Google Scholar
[7] Granstrom J, Feenstra J, Sodano HA, Farinholt K. Smart Mater. Struct. 2007, 16, 1810–1820.10.1088/0964-1726/16/5/036Suche in Google Scholar
[8] Liu Y, Tian G, Wang Y, Lin JH, Zhang QM, Hofmann HF. J. Intell. Mater. Syst. Struct. 2009, 20, 575–585.10.1177/1045389X08098195Suche in Google Scholar
[9] Kim NK, Lin RJT, Fakirov S, Aw K, Bhattacharyya D. Int. J. Polym. Mater.2014, 63, 23–32.10.1080/00914037.2013.769244Suche in Google Scholar
[10] Sencadas V, Gregorio R Jr, Lanceros-Mendez S. J. Macromol Sci. Part B: Phys. 2009, 48, 514–525.10.1080/00222340902837527Suche in Google Scholar
[11] Ng KL, Chan HLW, Choy CL. IEEE Trans. Ultrason. Ferroelect. Freq. Control. 2002, 47, 1308–1315.Suche in Google Scholar
[12] Kim GH, Hong SM, Seo Y. Phys. Chem. Chem. Phys. 2009, 11, 11506.10.1039/b912801hSuche in Google Scholar
[13] Hattori T, Kanaoka M, Ohigashi H. J. Appl. Phys. 1996, 111, 093503.Suche in Google Scholar
[14] Ye Y, Jiang Y, Wu Z, Zeng H. Integr. Ferroelectr. 2006, 80, 245–251.10.1080/10584580600659423Suche in Google Scholar
[15] Kuo W, Shieh M, Yu H. Mater. Chem. Phys. 2011, 129, 130–133.10.1016/j.matchemphys.2011.03.074Suche in Google Scholar
[16] Guo H, Zhang Y, Xue F, Cai Z, Shang Y, Li J, Chen Y, Wu Z, Jiang S. Cryst. Eng. Comm. 2013, 15, 1597–1606.10.1039/c2ce26578hSuche in Google Scholar
[17] Benz M, Euler WB. J. Appl. Polym. Sci. 2003, 89, 1093–1110.10.1002/app.12267Suche in Google Scholar
[18] Gregorio R Jr, Nociti NCPS. J. Phys. D: Appl. Phys. 1995, 28, 432–436.10.1088/0022-3727/28/2/028Suche in Google Scholar
[19] Kaura T, Nath R, Perlman MM. J. Phys. D: Appl. Phys. 1991, 24, 1848–1852.10.1088/0022-3727/24/10/020Suche in Google Scholar
[20] Lee JS, Kim GH, Kim WN, Oh KH, Kim HT, Hwang SS, Hong SM. Mol. Cryst. Liq. Cryst. 2008, 491, 247–254.10.1080/15421400802330861Suche in Google Scholar
[21] Levi N, Czerw R, Xing S, Iyer P, Carroll DL. Nano Lett. 2004, 4, 1267–1271.10.1021/nl0494203Suche in Google Scholar
[22] Ning HM, Hu N, Kamata T, Qiu JH, Chang C, Liu Y, Wu L, Qiu J, Ji H, Wang W, Zemba Y, Atobe S, Li Y, Fukunaga H. Smart Mater. Struct. 2013, 22, 06511.10.1088/0964-1726/22/6/065011Suche in Google Scholar
[23] Wu L, Yuan W, Nakamura T, Atobe S, Hu N, Fukunaga H, et al. Adv. Compos. Mater. 2013, 22, 49–63.10.1080/09243046.2013.764780Suche in Google Scholar
[24] Yu S, Zheng W, Yu W, Zhang Y, Jiang Q, Zhao Z. Macromolecules 2009, 42, 8870–8874.10.1021/ma901765jSuche in Google Scholar
[25] Alamusi, Xue J, Wu L, Hu N, Qiu J, Chang C, Atobe S, Fukunaga H, Watanabe T, Liu Y, Ning HM, Li J, Li Y, Zhao Y. Nanoscale 2012, 4, 7250–7255.10.1039/c2nr32185hSuche in Google Scholar PubMed
[26] Wu L, Huang G, Hu N, Fu S, Qiu J, Wang Z, Ying J, Chen Z, Li W, Tang S. RSC Adv. 2014, 4, 35896.10.1039/C4RA03382ESuche in Google Scholar
[27] Gregorio R Jr. J. Appl. Polym. Sci. 2006, 100, 3272–3279.10.1002/app.23137Suche in Google Scholar
[28] Branciforti NC, Sencadas V, Lanceros-Mendez S, Gregorio R Jr. J. Polym. Sci.: Part B: Polym. Phys. 2007, 45, 2793–2801.10.1002/polb.21239Suche in Google Scholar
[29] He XJ, Yao K, Gan BK. Appl. Phys. Lett. 2005, 97, 084101.10.1063/1.1862323Suche in Google Scholar
[30] Neese B, Wang Y, Chu BJ, Ren KL, Liu S, Zhang QM. Appl. Phys. Lett. 2007, 90, 242917.10.1063/1.2748076Suche in Google Scholar
[31] Huan Y, Liu Y, Yang Y. Polym. Engrg. Sci. 2007, 47, 1630–1633.10.1002/pen.20843Suche in Google Scholar
[32] Shalu SKC, Singh RK. RSC Adv., 2014, 4, 50914.10.1039/C4RA10209FSuche in Google Scholar
[33] Lovinger AJ. Science 1984, 220, 1115–1121.10.1126/science.220.4602.1115Suche in Google Scholar PubMed
[34] Dadi S, Paul R. Ferroelectrics 1996, 186, 255–258.10.1080/00150199608218078Suche in Google Scholar
[35] Guyomar D, Badel A, Lefeuvr E, Richard C. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2005, 52, 584–595.10.1109/TUFFC.2005.1428041Suche in Google Scholar
[36] Salimi A, Yousefi AA. J. Polym. Sci. B 2004, 42, 3487–3495.10.1002/polb.20223Suche in Google Scholar
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Original articles
- Physico-mechanical characterization and biodegradability behavior of polypropylene/poly(L-lactide) polymer blends
- Tensile properties of polyformaldehyde blends and nanocomposites
- Interaction simulation and experimental physico-mechanical analysis of distinct polarity blends of polyethylene and polyvinyl alcohol
- Thermal degradation of high-density polyethylene/soya spent powder blends
- Combination of montmorillonite and a Schiff-base polyphosphate ester to improve the flame retardancy of ethylene-vinyl acetate copolymer
- Effects of initial crystallization process on piezoelectricity of PVDF-HFP films
- Characteristics of natural leather finished with some ecofriendly mixtures of polymeric aqueous dispersions
- Dye wastewater treatment by direct contact membrane distillation using polyvinylidene fluoride hollow fiber membranes
- The effect of pressure variations on the formation of gas inclusions in the rotational molding process
- Numerical study of filling strategies in vacuum assisted resin transfer molding process
- Effect of gas counter pressure on the carbon fiber orientation and the associated electrical conductivities in injection molded polymer composites
Artikel in diesem Heft
- Frontmatter
- Original articles
- Physico-mechanical characterization and biodegradability behavior of polypropylene/poly(L-lactide) polymer blends
- Tensile properties of polyformaldehyde blends and nanocomposites
- Interaction simulation and experimental physico-mechanical analysis of distinct polarity blends of polyethylene and polyvinyl alcohol
- Thermal degradation of high-density polyethylene/soya spent powder blends
- Combination of montmorillonite and a Schiff-base polyphosphate ester to improve the flame retardancy of ethylene-vinyl acetate copolymer
- Effects of initial crystallization process on piezoelectricity of PVDF-HFP films
- Characteristics of natural leather finished with some ecofriendly mixtures of polymeric aqueous dispersions
- Dye wastewater treatment by direct contact membrane distillation using polyvinylidene fluoride hollow fiber membranes
- The effect of pressure variations on the formation of gas inclusions in the rotational molding process
- Numerical study of filling strategies in vacuum assisted resin transfer molding process
- Effect of gas counter pressure on the carbon fiber orientation and the associated electrical conductivities in injection molded polymer composites