Abstract
Different flame retardant ethylene-vinyl acetate copolymer (EVA) formulations were prepared to evaluate the synergistic effect between organo-montmorillonite (OMMT) and a Schiff-base polyphosphate ester (PAB) on the combustion behavior of EVA. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that montmorillonite platelets selectively dispersed in the PAB phase. EVA/PAB/OMMT(80/15/5) had better thermal stability and flame retardancy than EVA/PAB(80/20), as indicated by the results of thermogravimetric analysis (TGA), limited oxygen index (LOI), vertical burning test (UL-94) and microscale combustion colorimeter (MCC), showing a synergism between OMMT and PAB. For example, the onset decomposition temperature (T5%) increased from 233°C to 296°C, the char residue at 600°C increased from 6.6% to 11.0%, and the peak heat release rate (PHRR) decreased from 718.1 W/g to 706.6 W/g. This is caused by the silicoaluminophosphate (SAPO) structure formed by reactions between the phosphoric acid generated from PAB and OMMT.
Acknowledgments
This work was financially supported by the National Basic Research Program of China (2010CB631105) and the Doctoral Program Foundation of East China Institute of Technology (DHBK2013210).
References
[1] Zhou KQ, Wang BB, Jiang SH, Yuan HX, Song L, Hu Y. Ind. Eng. Chem. Res. 2013, 52, 6303–6310.10.1021/ie3024559Suche in Google Scholar
[2] Dutta SK, Bhownick AK, Mukunda PG, Chaki TK. Polym. Degrad. Stab. 1995, 50, 75–82.10.1016/0141-3910(95)00125-6Suche in Google Scholar
[3] Wang BB, Tang QB, Hong NN, Song L, Wang L, Shi YQ, Hu Y. Appl. Mater. Interfaces 2011, 3, 3754–3761.10.1021/am200940zSuche in Google Scholar PubMed
[4] Wang LL, Li B, Hu ZQ, Cao JJ. Appl. Mater. Interfaces 2013, 72, 138.10.1016/j.clay.2012.11.010Suche in Google Scholar
[5] Pereira C. Solid State Phenom. 2009, 151, 79.10.4028/www.scientific.net/SSP.151.79Suche in Google Scholar
[6] Pereira C, Herrero M, Labajos F, Marques A, Rives V. Polym. Degrad. Stab. 2009, 94, 939–946.10.1016/j.polymdegradstab.2009.03.009Suche in Google Scholar
[7] Ye L, Miao YY, Yan H, Li Z, Zhou YL, Liu JX, Liu H. Polym. Degrad. Stab. 2013, 98, 868–874.10.1016/j.polymdegradstab.2013.01.001Suche in Google Scholar
[8] Halpern Y, Mott DM, Niswander RH. Ind. Eng. Chem. Prod. Res. Dev. 1984, 23, 233–238.10.1021/i300014a011Suche in Google Scholar
[9] Imai T, Hamm S, Rothenbacher KP. Environ. Sci. Technol. 2003, 37, 652–656.10.1021/es025771cSuche in Google Scholar
[10] Lai XJ, Zeng XR, Li XQ, Liao F, Yin CY, Zhang XL. J. Macromol. Sci. 2012, 51, 1186–1198.10.7312/li--16274-052Suche in Google Scholar
[11] Cao ZH, Zhang Y, Song PA, Cai YZ, Guo Q, Fang ZP, Peng M. J. Anal. Appl. Pyroly. 2011, 92, 339–346.10.1016/j.jaap.2011.07.007Suche in Google Scholar
[12] Bourbigot S, Bras ML, Delobel R, Breant P. Polym. Degrad. Stab. 1996, 54, 275–287.10.1016/S0141-3910(96)00055-9Suche in Google Scholar
[13] Chen YJ, Zhan J, Zhang P, Nie SB, Lu HD, Song L, Hu Y. Ind. Eng. Chem. Res. 2010, 49, 8200–8208.10.1021/ie100989jSuche in Google Scholar
[14] Ravadits I, Toth A, Marosi G, Marton A, Szep A. Polym. Degrad. Stab. 2001, 74, 419–422.10.1016/S0141-3910(01)00179-3Suche in Google Scholar
[15] Marosi G, Marton A, Anna P, Bertalan G, Marosfoi B, Szep A. Polym. Degrad. Stab. 2002, 77, 259–265.10.1016/S0141-3910(02)00057-5Suche in Google Scholar
[16] Huang GB, Gao JR, Li YJ, Han L, Wang X. Polym. Degrad. Stab. 2010, 95, 245–253.10.1016/j.polymdegradstab.2009.08.013Suche in Google Scholar
[17] Huang GB, Li YJ, Han LA, Gao JR, Wang X. Appl. Clay Sci. 2011, 51, 360–365.10.1016/j.clay.2010.11.016Suche in Google Scholar
[18] Xia Y, Jian XG, Li JF, Wang XH, Xu YY. Polym. Plast. Technol. 2007, 46, 227–232.10.1080/03602550601152895Suche in Google Scholar
[19] Pack S, Kashiwagi T, Cao CH, Korach CS, Lewin M, Rafailovich MH. Macromolecules 2010, 43, 5338–5351.10.1021/ma100669gSuche in Google Scholar
[20] Lu HD, Hu Y, Li M, Song L. Polym. Plast. Technol. 2008, 47, 152–156.10.1080/03602550701816001Suche in Google Scholar
[21] Chen YJ, Fang ZP, Yang CZ, Guo ZH, Zhang Y. J. Appl. Polym. Sci. 2010, 115, 777–783.10.1002/app.31068Suche in Google Scholar
[22] Liu Y, Zhang Y, Cao ZH, Fang ZP. Fire Safety J. 2013, 61, 185–192.10.1016/j.firesaf.2013.09.009Suche in Google Scholar
[23] Gilman JW, Kashiwagi T, Nyden M, Brown JET, Jackson S, Lomakin S, Giannelis EP, Manias E. In Al-Malaiki, S, Golovoy, A, Wilkie, CA, Eds., Blackwell Scientific, Hoboken, NJ, 1999, p. 249.Suche in Google Scholar
[24] Chigwada G, Jash P, Jiang DD, Wilkie CA. Polym. Degrad. Stab. 2005, 89, 85–100.10.1016/j.polymdegradstab.2005.01.005Suche in Google Scholar
[25] Ma HY, Tong LF, Xu ZB, Fang ZP. Appl. Clay Sci. 2008, 42, 238–245.10.1016/j.clay.2007.12.009Suche in Google Scholar
[26] Tai QL, Song L, Hu Y, Yuen RKK, Feng H, Tao YJ. Mater. Chem. Phys. 2012, 134, 163–169.10.1016/j.matchemphys.2012.02.046Suche in Google Scholar
[27] Song PA, Fang ZP, Tong LF, Xu ZB. Polym. Eng. Sci. 2009, 49, 1326–1331.10.1002/pen.21153Suche in Google Scholar
[28] Zhang X, Wang JW, Zhong J, Liu AS, Gao JK. Mircropor. Mesopor. Mat.2008, 108, 13–21.10.1016/j.micromeso.2007.03.022Suche in Google Scholar
[29] Zanetti M, Camino G, Reichert P, Mulhaupt R. Macromol. Rapid Commun. 2001, 22, 176.10.1002/1521-3927(200102)22:3<176::AID-MARC176>3.0.CO;2-CSuche in Google Scholar
[30] Ma YF, Li N, Ren XT, SH Xiang, Guan NJ. J. Mol. Catal. A: Chem. 2006, 250, 9–14.10.1016/j.molcata.2006.01.028Suche in Google Scholar
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Original articles
- Physico-mechanical characterization and biodegradability behavior of polypropylene/poly(L-lactide) polymer blends
- Tensile properties of polyformaldehyde blends and nanocomposites
- Interaction simulation and experimental physico-mechanical analysis of distinct polarity blends of polyethylene and polyvinyl alcohol
- Thermal degradation of high-density polyethylene/soya spent powder blends
- Combination of montmorillonite and a Schiff-base polyphosphate ester to improve the flame retardancy of ethylene-vinyl acetate copolymer
- Effects of initial crystallization process on piezoelectricity of PVDF-HFP films
- Characteristics of natural leather finished with some ecofriendly mixtures of polymeric aqueous dispersions
- Dye wastewater treatment by direct contact membrane distillation using polyvinylidene fluoride hollow fiber membranes
- The effect of pressure variations on the formation of gas inclusions in the rotational molding process
- Numerical study of filling strategies in vacuum assisted resin transfer molding process
- Effect of gas counter pressure on the carbon fiber orientation and the associated electrical conductivities in injection molded polymer composites
Artikel in diesem Heft
- Frontmatter
- Original articles
- Physico-mechanical characterization and biodegradability behavior of polypropylene/poly(L-lactide) polymer blends
- Tensile properties of polyformaldehyde blends and nanocomposites
- Interaction simulation and experimental physico-mechanical analysis of distinct polarity blends of polyethylene and polyvinyl alcohol
- Thermal degradation of high-density polyethylene/soya spent powder blends
- Combination of montmorillonite and a Schiff-base polyphosphate ester to improve the flame retardancy of ethylene-vinyl acetate copolymer
- Effects of initial crystallization process on piezoelectricity of PVDF-HFP films
- Characteristics of natural leather finished with some ecofriendly mixtures of polymeric aqueous dispersions
- Dye wastewater treatment by direct contact membrane distillation using polyvinylidene fluoride hollow fiber membranes
- The effect of pressure variations on the formation of gas inclusions in the rotational molding process
- Numerical study of filling strategies in vacuum assisted resin transfer molding process
- Effect of gas counter pressure on the carbon fiber orientation and the associated electrical conductivities in injection molded polymer composites