Abstract
Surface coating of graphene oxide (GO) on membrane surfaces often suffers from low stability, with the GO layer prone to swelling and detachment during filtration. Cross-linking with environmentally friendly amino acids is expected to enhance the interfacial interaction between GO nanosheets and membrane surface via van der Waals interactions. This study introduces glycine (Gly) and diglycine (diGly) as cross-linking agents to improve the stability and performance of GO nanocomposite membranes. Field emission scanning electron microscopy (FESEM) images revealed that amino acid-crosslinked GO formed a thick pile structure on the membrane surface. The chemical bonding between GO and glycine derivatives was confirmed by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analyses. Stability test via continuously running water across the membrane surface in a crossflow filtration cell showed that cross-linking with glycine derivatives reduces the tendency of GO detachment from the self-fabricated polyethersulfone (PES) membrane surface. Ultrafiltration tests demonstrated that water permeability of nanocomposite membranes increased in the order of diGly-GO (14.70 LMH bar−1) > Gly-GO (8.66 LMH bar−1) > GO (4.57 LMH bar−1), without compromising bovine serum albumin (BSA) rejection efficiency (82–84 %). However, the reduction of hydroxyl groups in Gly-GO and diGly-GO nanocomposite membranes made them more susceptible to BSA fouling. Consequently, the pristine GO nanocomposite membrane exhibited the lowest flux declination rate and the highest flux recovery rate among the membranes. Overall, the results indicate that cross-linking GO nanosheets with glycine derivatives enhances membrane permeability and stability by improving the stacking of GO nanosheets.
Acknowledgments
The authors gratefully acknowledge CERVIE, UCSI University and research grants REIG-FETBE-2023/016 for the financial support.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: ChatGPT 4o was used to improve language.
-
Conflict of interest: Authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Qadir, M.; Drechsel, P.; Jiménez Cisneros, B.; Kim, Y.; Pramanik, A.; Mehta, P.; Olaniyan, O. Global and Regional Potential of Wastewater as a Water, Nutrient and Energy Source. Nat. Resour. Forum. 2020, 44, 40–51. https://doi.org/10.1111/1477-8947.12187.Suche in Google Scholar
2. UN-Water. The United Nations World Water Development Report, Wastewater: The Untapped Resource, 2017. Available from: https://www.unep.org/resources/publication/2017-un-world-water-development-report-wastewater-untapped-resource.Suche in Google Scholar
3. Fito, J.; Van Hulle, S. W. H. Wastewater Reclamation and Reuse Potentials in Agriculture: Towards Environmental Sustainability. Environ. Dev. Sustain. 2021, 23, 2949–2972. https://doi.org/10.1007/s10668-020-00732-y.Suche in Google Scholar
4. Ouyang, W.; Chen, T.; Shi, Y.; Tong, L.; Chen, Y.; Wang, W.; Yang, J.; Xue, J. Physico-chemical Processes. Water Environ. Res. 2019, 91, 1350–1377. https://doi.org/10.1002/wer.1231.Suche in Google Scholar PubMed
5. Karki, S.; Hazarika, G.; Yadav, D.; Ingole, P. G. Polymeric Membranes for Industrial Applications: Recent Progress, Challenges and Perspectives. Desalination 2024, 573, 117200. https://doi.org/10.1016/j.desal.2023.117200.Suche in Google Scholar
6. Chang, Z. H.; Sum, J. Y.; Lau, W. J.; Ang, W. L.; Teow, Y. H.; Ooi, B. S.; Yeap, S. P. Current State-of-the-Art of Non-reverse Osmosis-Like Forward Osmosis Technology. J. Memb. Sci. 2024, 711, 123209. https://doi.org/10.1016/j.memsci.2024.123209.Suche in Google Scholar
7. Wang, S.; Li, Q.; He, B.; Gao, M.; Ji, Y.; Cui, Z.; Yan, F.; Ma, X.; Younas, M.; Li, J. Preparation of Small-Pore Ultrafiltration Membranes with High Surface Porosity by In Situ CO2 Nanobubble-Assisted NIPS. ACS Appl. Mater. Interfaces. 2022, 14, 8633–8643. https://doi.org/10.1021/acsami.1c23760.Suche in Google Scholar PubMed
8. Yang, Z.; Zhou, Y.; Feng, Z.; Rui, X.; Zhang, T.; Zhang, Z. A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification. Polymers (Basel) 2019, 11, 1–22. https://doi.org/10.3390/polym11081252.Suche in Google Scholar PubMed PubMed Central
9. Ma, C.; Hu, J.; Sun, W.; Ma, Z.; Yang, W.; Wang, L.; Ran, Z.; Zhao, B.; Zhang, Z.; Zhang, H. Graphene Oxide-Polyethylene Glycol Incorporated PVDF Nanocomposite Ultrafiltration Membrane with Enhanced Hydrophilicity, Permeability, and Antifouling Performance. Chemosphere 2020, 253, 126649. https://doi.org/10.1016/j.chemosphere.2020.126649.Suche in Google Scholar PubMed
10. Alkhouzaam, A.; Qiblawey, H. Novel Polysulfone Ultrafiltration Membranes Incorporating Polydopamine Functionalized Graphene Oxide with Enhanced Flux and Fouling Resistance. J. Memb. Sci. 2021, 620, 118900. https://doi.org/10.1016/j.memsci.2020.118900.Suche in Google Scholar
11. Cihanoğlu, A.; Altinkaya, S. A. A Facile Route to the Preparation of Antibacterial Polysulfone-Sulfonated Polyethersulfone Ultrafiltration Membranes Using a Cationic Surfactant Cetyltrimethylammonium Bromide. J. Memb. Sci. 2020, 594, 117438. https://doi.org/10.1016/j.memsci.2019.117438.Suche in Google Scholar
12. Hu, M.; Zhao, L.; Yu, N.; Tian, Z.; Yin, Z.; Yang, Z.; Yang, W.; Graham, N. J. D. Application of Ultra-Low Concentrations of Moderately-Hydrophobic Chitosan for Ultrafiltration Membrane Fouling Mitigation. J. Memb. Sci. 2021, 635, 119540. https://doi.org/10.1016/j.memsci.2021.119540.Suche in Google Scholar
13. Escobar, I. C.; Van Der Bruggen, B. Microfiltration and Ultrafiltration Membrane Science and Technology. J. Appl. Polym. Sci. 2015, 132. https://doi.org/10.1002/app.42002.Suche in Google Scholar
14. Loh, S. T.; Beuscher, U.; Poddar, T. K.; Porter, A. G.; Wingard, J. M.; Husson, S. M.; Wickramasinghe, S. R. Interplay Among Membrane Properties, Protein Properties and Operating Conditions on Protein Fouling during Normal-Flow Microfiltration. J. Memb. Sci. 2009, 332, 93–103. https://doi.org/10.1016/j.memsci.2009.01.031.Suche in Google Scholar
15. Tanudjaja, H. J.; Anantharaman, A.; Ng, A. Q. Q.; Ma, Y.; Tanis-Kanbur, M. B.; Zydney, A. L.; Chew, J. W. A Review of Membrane Fouling by Proteins in Ultrafiltration and Microfiltration. J. Water Process Eng. 2022, 50, 103294. https://doi.org/10.1016/j.jwpe.2022.103294.Suche in Google Scholar
16. Abood, T.; Shabeeb, K.; Alzubaydi, A.; Goh, P.; Ismail, A.; Zrelli, A.; Alsalhy, Q. Effect of MXene Ti3C2 on the PVDF Ultrafiltration Membrane Properties and Performance. Eng. Technol. J. 2024, 0, 1–14. 0 https://doi.org/10.30684/etj.2024.145778.1663.Suche in Google Scholar
17. Farahbakhsh, J.; Najafi, M.; Golgoli, M.; Asif, A. H.; Khiadani, M.; Razmjou, A.; Zargar, M. Microplastics and Dye Removal from Textile Wastewater using MIL-53 (Fe) Metal-Organic Framework-Based Ultrafiltration Membranes. Chemosphere 2024, 364, 143170. https://doi.org/10.1016/j.chemosphere.2024.143170.Suche in Google Scholar PubMed
18. Xu, W.; Sun, X.; Huang, M.; Pan, X.; Huang, X.; Zhuang, H. Novel Covalent Organic Framework/PVDF Ultrafiltration Membranes with Antifouling and Lead Removal Performance. J. Environ. Manage. 2020, 269, 110758. https://doi.org/10.1016/j.jenvman.2020.110758.Suche in Google Scholar PubMed
19. Wang, C.; Zhang, L.; Yuan, H.; Fu, Y.; Zeng, Z.; Lu, J. Preparation of a PES/PFSA-g-MWCNT Ultrafiltration Membrane with Improved Permeation and Antifouling Properties. New J. Chem. 2021, 45, 4950–4962. https://doi.org/10.1039/D0NJ05322H.Suche in Google Scholar
20. Ding, A.; Ren, Z.; Zhang, Y.; Ma, J.; Bai, L.; Wang, B.; Cheng, X. Evaluations of Holey Graphene Oxide Modified Ultrafiltration Membrane and the Performance for Water Purification. Chemosphere 2021, 285, 131459. https://doi.org/10.1016/j.chemosphere.2021.131459.Suche in Google Scholar PubMed
21. Zhang, P.; Wang, Y.; Li, P.; Luo, X.; Feng, J.; Kong, H.; Li, T.; Wang, W.; Duan, X.; Liu, Y.; Li, M. Improving Stability and Separation Performance of Graphene Oxide/Graphene Nanofiltration Membranes by Adjusting the Laminated Regularity of Stacking-Sheets. Sci. Total Environ. 2022, 827, 154175. https://doi.org/10.1016/j.scitotenv.2022.154175.Suche in Google Scholar PubMed
22. Chen, J.; Dai, F.; Zhang, L.; Xu, J.; Liu, W.; Zeng, S.; Xu, C.; Chen, L.; Dai, C. Molecular Insights into the Dispersion Stability of Graphene Oxide in Mixed Solvents: Theoretical Simulations and Experimental Verification. J. Colloid Interface Sci. 2020, 571, 109–117. https://doi.org/10.1016/j.jcis.2020.03.036.Suche in Google Scholar PubMed
23. Junaidi, N. F. D.; Othman, N. H.; Fuzil, N. S.; Mat Shayuti, M. S.; Alias, N. H.; Shahruddin, M. Z.; Marpani, F.; Lau, W. J.; Ismail, A. F.; Aba, N. F. D. Recent Development of Graphene Oxide-Based Membranes for Oil–Water Separation: A Review. Sep. Purif. Technol. 2021, 258, 118000. https://doi.org/10.1016/j.seppur.2020.118000.Suche in Google Scholar
24. Anegbe, B.; Ifijen, I. H.; Maliki, M.; Uwidia, I. E.; Aigbodion, A. I. Graphene Oxide Synthesis and Applications in Emerging Contaminant Removal: A Comprehensive Review. Environ. Sci. Eur. 2024, 36, 15. https://doi.org/10.1186/s12302-023-00814-4.Suche in Google Scholar
25. Kong, S.; young Lim, M.; Shin, H.; Baik, J. H.; Lee, J. C. High-Flux and Antifouling Polyethersulfone Nanocomposite Membranes Incorporated with Zwitterion-Functionalized Graphene Oxide for Ultrafiltration Applications. J. Ind. Eng. Chem. 2020, 84, 131–140. https://doi.org/10.1016/j.jiec.2019.12.028.Suche in Google Scholar
26. Zhang, X.; Zhao, F.; Yang, L.; Geng, C.; Park, H. D.; Chen, H.; Li, Z.; Yang, Y. Constructing Quaternized Graphene Oxide Filtration Layer on PVDF Membrane by a Facile Strategy via Dopamine Crosslinking and Its Performance. J. Environ. Chem. Eng. 2023, 11, 111611. https://doi.org/10.1016/j.jece.2023.111611.Suche in Google Scholar
27. Chu, J.; Huang, Q.; Dong, Y.; Yao, Z.; Wang, J.; Qin, Z.; Ning, Z.; Xie, J.; Tian, W.; Yao, H.; Bai, J. Enrichment of Uranium in Seawater by Glycine Cross-Linked Graphene Oxide Membrane. Chem. Eng. J. 2022, 444, 136602. https://doi.org/10.1016/j.cej.2022.136602.Suche in Google Scholar
28. Hua Li, J.; Shuang Wang, S.; Bin Zhang, D.; Xing Ni, X.; Qing Zhang, Q. Amino Acids Functionalized Graphene Oxide for Enhanced Hydrophilicity and Antifouling Property of Poly(vinylidene fluoride) Membranes. Chinese J. Polym. Sci. (English Ed.) 2016, 34, 805–819. https://doi.org/10.1007/s10118-016-1808-2.Suche in Google Scholar
29. Ai, J.; Yang, L.; Liao, G.; Xia, H.; Xiao, F. Applications of Graphene Oxide Blended Poly(vinylidene fluoride) Membranes for the Treatment of Organic Matters and Its Membrane Fouling Investigation. Appl. Surf. Sci. 2018, 455, 502–512. https://doi.org/10.1016/j.apsusc.2018.05.162.Suche in Google Scholar
30. Méricq, J. P.; Mendret, J.; Brosillon, S.; Faur, C. High Performance PVDF-TiO2 Membranes for Water Treatment. Chem. Eng. Sci. 2015, 123, 283–291. https://doi.org/10.1016/j.ces.2014.10.047.Suche in Google Scholar
31. Wu, W.; Zhang, X.; Qin, L.; Li, X.; Meng, Q.; Shen, C.; Zhang, G. Enhanced MPBR with Polyvinylpyrrolidone-Graphene Oxide/PVDF Hollow Fiber Membrane for Efficient Ammonia Nitrogen Wastewater Treatment and High-Density Chlorella Cultivation. Chem. Eng. J. 2020, 379, 122368. https://doi.org/10.1016/j.cej.2019.122368.Suche in Google Scholar
32. Yuan, Y.; Gao, X.; Wei, Y.; Wang, X.; Wang, J.; Zhang, Y.; Gao, C. Enhanced Desalination Performance of Carboxyl Functionalized Graphene Oxide Nanofiltration Membranes. Desalination 2017, 405, 29–39. https://doi.org/10.1016/j.desal.2016.11.024.Suche in Google Scholar
33. Yang, R.; Fan, Y.; Yu, R.; Dai, F.; Lan, J.; Wang, Z.; Chen, J.; Chen, L. Robust Reduced Graphene Oxide Membranes with High Water Permeance Enhanced by K+ Modification. J. Memb. Sci. 2021, 635, 119437. https://doi.org/10.1016/j.memsci.2021.119437.Suche in Google Scholar
34. Cheng, W.; Lu, X.; Kaneda, M.; Zhang, W.; Bernstein, R.; Ma, J.; Elimelech, M. Graphene Oxide-Functionalized Membranes: The Importance of Nanosheet Surface Exposure for Biofouling Resistance. Environ. Sci. Technol. 2020, 54, 517–526. https://doi.org/10.1021/acs.est.9b05335.Suche in Google Scholar PubMed
35. Kwon, O.; Choi, Y.; Choi, E.; Kim, M.; Woo, Y. C.; Kim, D. W. Fabrication Techniques for Graphene Oxide‐Based Molecular Separation Membranes: Towards Industrial Application. Nanomaterials 2021, 11, 1–15. https://doi.org/10.3390/nano11030757.Suche in Google Scholar PubMed PubMed Central
36. Yu, J.; He, Y.; Wang, Y.; Li, S.; Tian, S. Ethylenediamine-Oxidized Sodium Alginate Hydrogel Cross-Linked Graphene Oxide Nanofiltration Membrane with Self-Healing Property for Efficient Dye Separation. J. Memb. Sci. 2023, 670, 121366. https://doi.org/10.1016/j.memsci.2023.121366.Suche in Google Scholar
37. Zheng, S.; Tu, Q.; Urban, J. J.; Li, S.; Mi, B. Swelling of Graphene Oxide Membranes in Aqueous Solution: Characterization of Interlayer Spacing and Insight into Water Transport Mechanisms. ACS Nano 2017, 11, 6440–6450. https://doi.org/10.1021/acsnano.7b02999.Suche in Google Scholar PubMed
38. Piñeiro-García, A.; Tristan, F.; Meneses-Rodríguez, D.; Semetey, V.; Vega-Díaz, S. M. Tuning the Nucleophilic Attack and the Reductive Action of Glycine on Graphene Oxide Under Basic Medium. Mater. Today Chem. 2021, 19, 100386. https://doi.org/10.1016/j.mtchem.2020.100386.Suche in Google Scholar
39. Thien, G. S. H.; Omar, F. S.; Blya, N. I. S. A.; Chiu, W. S.; Lim, H. N.; Yousefi, R.; Sheini, F. J.; Huang, N. M. Improved Synthesis of Reduced Graphene Oxide-Titanium Dioxide Composite with Highly Exposed {001} Facets and Its Photoelectrochemical Response. Int. J. Photoenergy. 2014, 2014, 1–9. https://doi.org/10.1155/2014/650583.Suche in Google Scholar
40. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. https://doi.org/10.1021/nn1006368.Suche in Google Scholar PubMed
41. Pytlakowska, K.; Kozik, V.; Matussek, M.; Pilch, M.; Hachuła, B.; Kocot, K. Glycine Modified Graphene Oxide as a Novel Sorbent for Preconcentration of Chromium, Copper, and Zinc Ions from Water Samples Prior to Energy Dispersive X-ray Fluorescence Spectrometric Determination. RSC Adv. 2016, 6, 42836–42844. https://doi.org/10.1039/c6ra03662g.Suche in Google Scholar
42. Wu, Z.; Gao, L.; Wang, J.; Zhao, F.; Fan, L.; Hua, D.; Japip, S.; Xiao, J.; Zhang, X.; Zhou, S. F.; Zhan, G. Preparation of Glycine Mediated Graphene Oxide/g-C3N4 Lamellar Membranes for Nanofiltration. J. Memb. Sci. 2020, 601, 117948. https://doi.org/10.1016/j.memsci.2020.117948.Suche in Google Scholar
43. Rossi-Fernández, A. C.; Villegas-Escobar, N.; Guzmán-Angel, D.; Gutiérrez-Oliva, S.; Ferullo, R. M.; Castellani, N. J.; Toro-Labbé, A. Theoretical Study of Glycine Amino Acid Adsorption on Graphene Oxide. J. Mol. Model. 2020, 26, 33. https://doi.org/10.1007/s00894-020-4297-8.Suche in Google Scholar PubMed
44. Hidayah, N. M. S.; Liu, W. W.; Lai, C. W.; Noriman, N. Z.; Khe, C. S.; Hashim, U.; Lee, H. C. Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization. AIP Conf. Proc. 2017, 1892. https://doi.org/10.1063/1.5005764.Suche in Google Scholar
45. Liu, J.; Wang, S.; Yang, R.; Li, L.; Liang, S.; Chen, L. Bio-inspired Graphene Oxide-Amino Acid Cross-Linked Framework Membrane Trigger High Water Permeance and High Metal Ions rejection. J. Memb. Sci. 2022, 659, 120745. https://doi.org/10.1016/j.memsci.2022.120745.Suche in Google Scholar
46. Valizadeh, S.; Naji, L.; Karimi, M. Controlling Interlayer Spacing of Graphene Oxide Membrane in Aqueous Media Using a Biocompatible Heterobifunctional Crosslinker for Penicillin-G Procaine Removal. Sep. Purif. Technol. 2021, 263, 118392. https://doi.org/10.1016/j.seppur.2021.118392.Suche in Google Scholar
47. Hung, W. S.; An, Q. F.; De Guzman, M.; Lin, H. Y.; Huang, S. H.; Liu, W. R.; Hu, C. C.; Lee, K. R.; Lai, J. Y. Pressure-Assisted Self-Assembly Technique for Fabricating Composite Membranes Consisting of Highly Ordered Selective Laminate Layers of Amphiphilic Graphene Oxide. Carbon N. Y. 2014, 68, 670–677. https://doi.org/10.1016/j.carbon.2013.11.048.Suche in Google Scholar
48. Mi, B. Graphene Oxide Membranes for Ionic and Molecular Sieving. Science 2014, 343, 740–742. https://doi.org/10.1126/science.1250247.Suche in Google Scholar PubMed
49. Hut, N. A.; Goh, P. S.; Ahmad, N. A.; Kang, H. S.; Wong, K. C.; Syfina, N. A.; Ismail, A. F. Surface Decoration of Polyethylene Terephthalate (PET) Waste Bottle-Derived Ultrafiltration Membrane for Enhanced Lead Ion Removal and Antifouling Properties. J. Environ. Chem. Eng. 2024, 12, 111766. https://doi.org/10.1016/j.jece.2023.111766.Suche in Google Scholar
50. Davari, S.; Omidkhah, M.; Salari, S. Role of Polydopamine in the Enhancement of Binding Stability of TiO2 Nanoparticles on Polyethersulfone Ultrafiltration Membrane. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126694. https://doi.org/10.1016/j.colsurfa.2021.126694.Suche in Google Scholar
51. Abdi, S.; Nasiri, M.; Yuan, S.; Zhu, J.; Van der Bruggen, B. Fabrication of PES-Based Super-Hydrophilic Ultrafiltration Membranes by Combining Hydrous Ferric Oxide Particles and UV Irradiation. Sep. Purif. Technol. 2021, 259, 118132. https://doi.org/10.1016/j.seppur.2020.118132.Suche in Google Scholar
52. Zhang, H.; Wang, F.; Guo, Z. The Antifouling Mechanism and Application of Bio-inspired Superwetting Surfaces with Effective Antifouling Performance. Adv. Colloid Interface Sci. 2024, 325, 103097. https://doi.org/10.1016/j.cis.2024.103097.Suche in Google Scholar PubMed
53. Ismail, R. A.; Kumar, M.; Thomas, N.; An, A. K.; Arafat, H. A. Multifunctional Hybrid UF Membrane from Poly(ether sulfone) and Quaternized Polydopamine Anchored Reduced Graphene Oxide Nanohybrid for Water Treatment. J. Memb. Sci. 2021, 639, 119779. https://doi.org/10.1016/j.memsci.2021.119779.Suche in Google Scholar
© 2025 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Preface: 9th International Conference for Young Chemists (ICYC) 2024
- Research Articles
- Doping TiO2 with Cu from electroplating wastewater for remarkable improvement of its activity under visible light for E. coli bacterial disinfection in water
- Investigating the potential of prenylated and geranylated acylphloroglucinol-based xanthenones as potent soybean 15-lipoxygenase inhibitors: a combined in vitro and in silico approach
- Intelligent food packaging from Ganyong starch (Canna Edulis Kerr.) modified with nanocellulose from corn husk (Zea mays) and curcumin as bioindicator
- Evaluation of 2-(1H-1,2,3-triazol-1-yl) acetic acid derivatives as potential human hypoxia-inducible factor (HIF) prolyl hydroxylase domain-2 (PHD2) inhibitors
- Microparticles zerumbone from Zingiber zerumbet rhizome in chitosan modified oleic acid
- Enhanced visible photocatalytic degradation of diclofenac by ultrasound-assisted prepared C and N co-doping TiO2
- Enhanced stability and permeability of graphene oxide nanocomposite membranes via glycine and diglycine cross-linking
- Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Preface: 9th International Conference for Young Chemists (ICYC) 2024
- Research Articles
- Doping TiO2 with Cu from electroplating wastewater for remarkable improvement of its activity under visible light for E. coli bacterial disinfection in water
- Investigating the potential of prenylated and geranylated acylphloroglucinol-based xanthenones as potent soybean 15-lipoxygenase inhibitors: a combined in vitro and in silico approach
- Intelligent food packaging from Ganyong starch (Canna Edulis Kerr.) modified with nanocellulose from corn husk (Zea mays) and curcumin as bioindicator
- Evaluation of 2-(1H-1,2,3-triazol-1-yl) acetic acid derivatives as potential human hypoxia-inducible factor (HIF) prolyl hydroxylase domain-2 (PHD2) inhibitors
- Microparticles zerumbone from Zingiber zerumbet rhizome in chitosan modified oleic acid
- Enhanced visible photocatalytic degradation of diclofenac by ultrasound-assisted prepared C and N co-doping TiO2
- Enhanced stability and permeability of graphene oxide nanocomposite membranes via glycine and diglycine cross-linking
- Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition