Home Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition
Article
Licensed
Unlicensed Requires Authentication

Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition

  • Fia Fathiana Wulan , Rachelio Clorozenta Pranaya , Jecky , Intan Nadira , Endang Astuti , Niko Prasetyo and Tutik Dwi Wahyuningsih ORCID logo EMAIL logo
Published/Copyright: March 27, 2025

Abstract

Malaria continues to pose a significant threat to global health, demanding the development of novel antimalarial agents. This study investigated the antimalarial potential of eleven (11) furanyl-chalcone derivatives synthesized from two distinct furan sources: 2-acetylfuran and furfuraldehyde with Claisen–Schmidt condensation under base conditions, and successfully synthesized target compound with yields ranging from 67 % to 94 %. Structural characterization was achieved using spectroscopic techniques, including NMR, IR, and GC-MS. Our findings revealed that compounds derived from 2-acetylfuran exhibited superior antimalarial activity compared to their furfuraldehyde counterparts. Compounds B1 and B4 demonstrated the most promising activity with IC50 values of 1.01 μM and 1.04 μM, respectively against P.falciparum FCR-3 strain. Our analysis revealed that B4 forms a stable hydrogen bond with Ser108 in the active site of wild-type PfDHFR, with a binding affinity of −6.7 kcal/mol. Importantly, this interaction was preserved even in the presence of a mutation at this residue, with B4 forming a hydrogen bond with Asn108 in the mutant enzyme, exhibiting a binding affinity of −7.0 kcal/mol. This suggests that B4 has the potential to overcome pyrimethamine resistance. Further analysis, utilizing DFT calculations and MEP, identified B4 as the most reactive compound within the series. The reactive site was located in the carbonyl group, with enhanced reactivity attributed to the presence of the electron-rich furan ring and the ortho-methoxy substituent.


Corresponding author: Tutik Dwi Wahyuningsih, Department of Chemistry, Faculty of Mathematics and Natural Sciences Universitas Gadjah Mada, Yogyakarta, 42124, Indonesia, e-mail:
Article note: A collection of invited papers based on presentations at the 9th International Conference for Young Chemists (ICYC 2024) held on 9–11 Oct 2024 in Penang, Malaysia.

Award Identifier / Grant number: 2081/UN1/DITLIT/PT.01.03/2024

Acknowledgments

Special appreciation is extended to the Austrian–Indonesian Centre for Computational Chemistry for providing access to Gaussian 09.

  1. Research ethics: The Medical and Health Research Ethics Committee (MHREC), Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada – Dr. Sardjito General Hospital, provided ethical clearance for the antimalarial test, with the reference number KE/FK/1421/EC/2022.

  2. Informed consent: Not applicable.

  3. Author contributions: FFW: Data Collection or Processing, Literature Search, Writing RCP: Data Collection or Processing J: Data Collection or Processing, IN: Data Collection or Processing EA: Design, Writing NP: Design, Writing TDW: Concept, Design, Literature Search, Writing.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The authors gratefully acknowledge the Indonesian Ministry of Higher Education, Science, and Technology for the Pendidikan Magister Menuju Doktor Untuk Sarjana Unggul (PMDSU) scholarship awarded to Fia Fathiana Wulan (contract number 2081/UN1/DITLIT/PT.01.03/2024).

  7. Data availability: Not applicable.

References

1. Siqueira-Neto, J. L.; Wicht, K. J.; Chibale, K.; Burrows, J. N.; Fidock, D. A.; Winzeler, E. A. Nat. Rev. Drug Discov. 2023, 22, 807–826; https://doi.org/10.1038/s41573-023-00772-9.Search in Google Scholar PubMed PubMed Central

2. Hanandita, W.; Tampubolon, G. Int. J. Health Geogr. 2016, 15, 1–15; https://doi.org/10.1186/s12942-015-0031-7.Search in Google Scholar PubMed PubMed Central

3. Ministry of Health Republic Indonesia. Kasus Malaria di Indonesia. 2024, https://malaria.kemkes.go.id/case.Search in Google Scholar

4. Mandal, S. Asian Pacific J. Trop. Dis. 2014, 4, S13–S26; https://doi.org/10.1016/s2222-1808(14)60410-2.Search in Google Scholar

5. Wicht, K. J.; Mok, S.; Fidock, D. A. Annu. Rev. Microbiol. 2020, 74, 431–454; https://doi.org/10.1146/annurev-micro-020518-115546.Search in Google Scholar PubMed PubMed Central

6. Guémas, E.; Coppée, R.; Ménard, S.; du Manoir, M.; Nsango, S.; Makaba Mvumbi, D.; Nakoune, E.; Eboumbou Moukoko, C. E.; Bouyou Akotet, M. K.; Mirabeau, T. Y.; Manguin, S.; Malekita Yobi, D.; Akiana, J.; Kouna, L. C.; Mawili Mboumba, D. P.; Voumbo-Matoumona, D. F.; Otam, A. L.; Rubbo, P. A.; Lombart, J. P.; Kwanai, E.; Cohen, O.; Iriart, X.; Ayong, L.; Lekana-Douki, J. B.; Ariey, F.; Berry, A. Lancet Microbe 2023, 4, e983–e993; https://doi.org/10.1016/s2666-5247(23)00211-2.Search in Google Scholar PubMed

7. Gatton, M. L.; Martin, L. B.; Cheng, Q. Antimicrob. Agents Chemother. 2004, 48, 2116–2123; https://doi.org/10.1128/aac.48.6.2116-2123.2004.Search in Google Scholar PubMed PubMed Central

8. Yuvaniyama, J.; Chitnumsub, P.; Kamchonwongpaisan, S.; Vanichtanankul, J.; Sirawaraporn, W.; Taylor, P.; Walkinshaw, M. D.; Yuthavong, Y. Nat. Struct. Biol. 2003, 10, 357–365; https://doi.org/10.1038/nsb921.Search in Google Scholar PubMed

9. Hermawan, F.; Jumina, J.; Pranowo, H. D.; Sholikhah, E. N.; Iresha, M. R. Indones. J. Chem. 2022, 22, 263–271; https://doi.org/10.22146/ijc.69448.Search in Google Scholar

10. Gomes, M. N.; Muratov, E. N.; Pereira, M.; Peixoto, J. C.; Rosseto, L. P.; Cravo, P. V. L.; Andrade, C. H.; Neves, B. J. Molecules; https://doi.org/10.3390/molecules22081210.Search in Google Scholar PubMed PubMed Central

11. Kalaskar, M. G.; Surana, S. J. Anc. Sci. Life 2012, 32, 107–111; https://doi.org/10.4103/0257-7941.118550.Search in Google Scholar PubMed PubMed Central

12. Pereira, V. D. J.; Auxiliadora, M.; Kaplan, C. Floresta e Ambient. 2013, 20, 1–15.10.4322/floram.2012.075Search in Google Scholar

13. da Silva, L.; Donato, I. A.; Gonçalves, C. A. C.; Scherf, J. R.; dos Santos, H. S.; Mori, E.; Coutinho, H. D. M.; da Cunha, F. A. B. 3 Biotech 2023, 13, 1–30.10.1007/s13205-022-03398-7Search in Google Scholar PubMed PubMed Central

14. Qin, H. L.; Zhang, Z. W.; Lekkala, R.; Alsulami, H.; Rakesh, K. P. Eur. J. Med. Chem. 2020, 193, 112215; https://doi.org/10.1016/j.ejmech.2020.112215.Search in Google Scholar PubMed

15. Smit, F. J.; N’Da, D. D. Bioorg. Med. Chem. 2014, 22, 1128–1138.10.1016/j.bmc.2013.12.032Search in Google Scholar PubMed

16. Yadav, N.; Dixit, S. K.; Bhattacharya, A.; Mishra, L. C.; Sharma, M.; Awasthi, S. K.; Bhasin, V. K. Chem. Biol. Drug Des. 2012, 80, 340–347; https://doi.org/10.1111/j.1747-0285.2012.01383.x.Search in Google Scholar PubMed

17. Mulyana, F. E.; Waskitha, S. S. W.; Pranowo, D.; Khairuddean, M.; Wahyumingsih, T. D. Pharmacia 2023, 70, 1305–1313; https://doi.org/10.3897/pharmacia.70.e107406.Search in Google Scholar

18. Waskitha, S. S. W.; Mulyana, F. E.; Riza, N. F.; Stansyah, Y. M.; Tahir, I.; Wahyuningsih, T. D. Rasayan J. Chem. 2021, 14, 2363–2370; https://doi.org/10.31788/rjc.2021.1445867.Search in Google Scholar

19. Syahri, J.; Yuanita, E.; Nurohmah, B. A.; Armunanto, R.; Purwono, B. Asian Pac. J. Trop. Biomed. 2017, 7, 675–679; https://doi.org/10.1016/j.apjtb.2017.07.004.Search in Google Scholar

20. Singh, P.; Anand, A.; Kumar, V. Eur. J. Med. Chem. 2014, 85, 758–777; https://doi.org/10.1016/j.ejmech.2014.08.033.Search in Google Scholar PubMed

21. Elkanzi, N. A. A.; Hrichi, H.; Alolayan, R. A.; Derafa, W.; Zahou, F. M.; Bakr, R. B. ACS Omega 2022, 7, 27769–27786; https://doi.org/10.1021/acsomega.2c01779.Search in Google Scholar PubMed PubMed Central

22. Rudrapal, M.; Khan, J.; Bin Dukhyil, A. A.; Alarousy, R. M. I. I.; Attah, E. I.; Sharma, T.; Khairnar, S. J.; Bendale, A. R. Molecules 2021, 26, 1–21.10.3390/molecules26237177Search in Google Scholar PubMed PubMed Central

23. Wiratama, M.; Satria, S.; Waskitha, W.; Haryadi, W.; Wahyuningsih, T. D. Trop. J. Pharm. Res. 2022, 21, 1255–1261; https://doi.org/10.4314/tjpr.v21i6.18.Search in Google Scholar

24. Jasim, H. A.; Nahar, L.; Jasim, M. A.; Moore, S. A.; Ritchie, K. J.; Sarker, S. D. Biomolecules; https://doi.org/10.3390/biom11081203.Search in Google Scholar PubMed PubMed Central

25. Meanwell, N. A. J. Med. Chem. 2011, 54, 2529–2591; https://doi.org/10.1021/jm1013693.Search in Google Scholar PubMed

26. Go, M.-L.; Liu, M.; Wilairat, P.; Rosenthal, P. J.; Saliba, K. J.; Kirk, K. Antimicrob. Agents Chemother. 2004, 48, 3241–3245; https://doi.org/10.1128/aac.48.9.3241-3245.2004.Search in Google Scholar

27. Akolkar, H. N.; Dengale, S. G.; Deshmukh, K. K.; Karale, B. K.; Darekar, N. R.; Khedkar, V. M.; Shaikh, M. H. Polycycl. Aromat. Compd. 2022, 42, 1959–1971; https://doi.org/10.1080/10406638.2020.1821231.Search in Google Scholar

28. Deepika, C.; Isha, R.; Jyoti, M.; Rajat, G.; Asif, H.; Prabha, G.; Sukhbir, K. L.; Cent. Nerv. Syst. Agents Med. Chem. 2022, 22, 39–56.Search in Google Scholar

29. Mahmud, A. W.; Shallangwa, G. A.; Uzairu, A. Bull. Natl. Res. Cent.; https://doi.org/10.1186/s42269-020-00333-9.Search in Google Scholar

30. Mahapatra, D. K.; Bharti, S. K.; Asati, V. Eur. J. Med. Chem. 2015, 101, 496–524; https://doi.org/10.1016/j.ejmech.2015.06.052.Search in Google Scholar PubMed

31. Cativiela, C.; Garcia, J. I. Can. J. Chem. 1990, 68, 1477–1481; https://doi.org/10.1139/v90-226.Search in Google Scholar

32. Simmler, C.; Lankin, D. C.; Nikolić, D.; van Breemen, R. B.; Pauli, G. F. Fitoterapia 2017, 121, 6–15; https://doi.org/10.1016/j.fitote.2017.06.017.Search in Google Scholar PubMed PubMed Central

33. Suma, A. A. T.; Wahyuningsih, T. D.; Mustofa. Rasayan J. Chem. 2019, 12, 502–510.10.31788/RJC.2019.1225020Search in Google Scholar

34. Dziągwa-Becker, M.; Oleszek, M.; Zielińska, S.; Oleszek, W. Molecules 2024, 29, 1–11.10.3390/molecules29102247Search in Google Scholar PubMed PubMed Central

35. Sinha, S.; Batovska, D. I.; Medhi, B.; Radotra, B. D.; Bhalla, A.; Markova, N.; Sehgal, R. Malar. J. 2019, 18, 421; https://doi.org/10.1186/s12936-019-3060-z.Search in Google Scholar PubMed PubMed Central

36. Batista, R.; De Jesus Silva Júnior, A.; De Oliveira, A. B. Molecules 2009, 14, 3037–3072.10.3390/molecules14083037Search in Google Scholar PubMed PubMed Central

37. Patel, K.; Karthikeyan, C.; Raja Solomon, V.; Hari Narayana Moorthy, N. S.; Lee, H.; Sahu, K.; Singh Deora, G.; Trivedi, P. Lett. Drug Des. Discov. 2011, 8, 308–311; https://doi.org/10.2174/157018011794839475.Search in Google Scholar

38. Tomar, V.; Bhattacharjee, G.; Kamaluddin; Rajakumar, S.; Srivastava, K.; Puri, S. K. Eur. J. Med. Chem. 2010, 45, 745–751; https://doi.org/10.1016/j.ejmech.2009.11.022.Search in Google Scholar PubMed

39. Kufareva, I.; Abagyan, R. Methods Mol. Biol. 2012, 857, 231–257; https://doi.org/10.1007/978-1-61779-588-6_10.Search in Google Scholar PubMed PubMed Central

40. Vanichtanankul, J.; Taweechai, S.; Yuvaniyama, J.; Vilaivan, T.; Chitnumsub, P.; Kamchonwongpaisan, S.; Yuthavong, Y. ACS Chem. Biol. 2011, 6, 905–911; https://doi.org/10.1021/cb200124r.Search in Google Scholar PubMed

41. Pinzi, L.; Rastelli, G. Int. J. Mol. Sci. 2019, 20, 4331; https://doi.org/10.3390/ijms20184331.Search in Google Scholar PubMed PubMed Central

42. Lemcke, T.; Christensen, I. T.; Jørgensen, F. S. Bioorg. Med. Chem. 1999, 7, 1003–1011; https://doi.org/10.1016/s0968-0896(99)00018-8.Search in Google Scholar PubMed

43. Pegu, D.; Deb, J.; Van Alsenoy, C.; Sarkar, U. Spectrosc. Lett. 2017, 50, 232–243; https://doi.org/10.1080/00387010.2017.1308381.Search in Google Scholar

44. Lipinski, C. A. Drug Discov. Today Technol. 2004, 1, 337–341; https://doi.org/10.1016/j.ddtec.2004.11.007.Search in Google Scholar PubMed

45. Wang, N. N.; Huang, C.; Dong, J.; Yao, Z. J.; Zhu, M. F.; Deng, Z. K.; Lv, B.; Lu, A. P.; Chen, A. F.; Cao, D. S. RSC Adv. 2017, 7, 19007–19018; https://doi.org/10.1039/c6ra28442f.Search in Google Scholar

46. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, D. J. F. K.; Montgomery, J. A.Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; J. M. M; 2016.Search in Google Scholar

47. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605–1612; https://doi.org/10.1002/jcc.20084.Search in Google Scholar PubMed

48. Trott, O.; Olson, A. J. J. Comput. Chem. 2009, 31; https://doi.org/10.1002/jcc.21334.Search in Google Scholar PubMed PubMed Central

49. D. S. BIOVIA, 2020.Search in Google Scholar

50. Koopmans, T. Physica 1934, 1, 104–113; https://doi.org/10.1016/s0031-8914(34)90011-2.Search in Google Scholar

51. Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580–592; https://doi.org/10.1002/jcc.22885.Search in Google Scholar PubMed

52. Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33–38; https://doi.org/10.1016/0263-7855(96)00018-5.Search in Google Scholar PubMed

53. Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. Nucleic Acids Res. 2021, 49, W5–W14; https://doi.org/10.1093/nar/gkab255.Search in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2024-0330).


Received: 2024-11-21
Accepted: 2025-02-10
Published Online: 2025-03-27
Published in Print: 2025-06-26

© 2025 IUPAC & De Gruyter

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0330/html
Scroll to top button