Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition
-
Fia Fathiana Wulan
Abstract
Malaria continues to pose a significant threat to global health, demanding the development of novel antimalarial agents. This study investigated the antimalarial potential of eleven (11) furanyl-chalcone derivatives synthesized from two distinct furan sources: 2-acetylfuran and furfuraldehyde with Claisen–Schmidt condensation under base conditions, and successfully synthesized target compound with yields ranging from 67 % to 94 %. Structural characterization was achieved using spectroscopic techniques, including NMR, IR, and GC-MS. Our findings revealed that compounds derived from 2-acetylfuran exhibited superior antimalarial activity compared to their furfuraldehyde counterparts. Compounds B1 and B4 demonstrated the most promising activity with IC50 values of 1.01 μM and 1.04 μM, respectively against P.falciparum FCR-3 strain. Our analysis revealed that B4 forms a stable hydrogen bond with Ser108 in the active site of wild-type PfDHFR, with a binding affinity of −6.7 kcal/mol. Importantly, this interaction was preserved even in the presence of a mutation at this residue, with B4 forming a hydrogen bond with Asn108 in the mutant enzyme, exhibiting a binding affinity of −7.0 kcal/mol. This suggests that B4 has the potential to overcome pyrimethamine resistance. Further analysis, utilizing DFT calculations and MEP, identified B4 as the most reactive compound within the series. The reactive site was located in the carbonyl group, with enhanced reactivity attributed to the presence of the electron-rich furan ring and the ortho-methoxy substituent.
Award Identifier / Grant number: 2081/UN1/DITLIT/PT.01.03/2024
Acknowledgments
Special appreciation is extended to the Austrian–Indonesian Centre for Computational Chemistry for providing access to Gaussian 09.
-
Research ethics: The Medical and Health Research Ethics Committee (MHREC), Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada – Dr. Sardjito General Hospital, provided ethical clearance for the antimalarial test, with the reference number KE/FK/1421/EC/2022.
-
Informed consent: Not applicable.
-
Author contributions: FFW: Data Collection or Processing, Literature Search, Writing RCP: Data Collection or Processing J: Data Collection or Processing, IN: Data Collection or Processing EA: Design, Writing NP: Design, Writing TDW: Concept, Design, Literature Search, Writing.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The authors gratefully acknowledge the Indonesian Ministry of Higher Education, Science, and Technology for the Pendidikan Magister Menuju Doktor Untuk Sarjana Unggul (PMDSU) scholarship awarded to Fia Fathiana Wulan (contract number 2081/UN1/DITLIT/PT.01.03/2024).
-
Data availability: Not applicable.
References
1. Siqueira-Neto, J. L.; Wicht, K. J.; Chibale, K.; Burrows, J. N.; Fidock, D. A.; Winzeler, E. A. Nat. Rev. Drug Discov. 2023, 22, 807–826; https://doi.org/10.1038/s41573-023-00772-9.Search in Google Scholar PubMed PubMed Central
2. Hanandita, W.; Tampubolon, G. Int. J. Health Geogr. 2016, 15, 1–15; https://doi.org/10.1186/s12942-015-0031-7.Search in Google Scholar PubMed PubMed Central
3. Ministry of Health Republic Indonesia. Kasus Malaria di Indonesia. 2024, https://malaria.kemkes.go.id/case.Search in Google Scholar
4. Mandal, S. Asian Pacific J. Trop. Dis. 2014, 4, S13–S26; https://doi.org/10.1016/s2222-1808(14)60410-2.Search in Google Scholar
5. Wicht, K. J.; Mok, S.; Fidock, D. A. Annu. Rev. Microbiol. 2020, 74, 431–454; https://doi.org/10.1146/annurev-micro-020518-115546.Search in Google Scholar PubMed PubMed Central
6. Guémas, E.; Coppée, R.; Ménard, S.; du Manoir, M.; Nsango, S.; Makaba Mvumbi, D.; Nakoune, E.; Eboumbou Moukoko, C. E.; Bouyou Akotet, M. K.; Mirabeau, T. Y.; Manguin, S.; Malekita Yobi, D.; Akiana, J.; Kouna, L. C.; Mawili Mboumba, D. P.; Voumbo-Matoumona, D. F.; Otam, A. L.; Rubbo, P. A.; Lombart, J. P.; Kwanai, E.; Cohen, O.; Iriart, X.; Ayong, L.; Lekana-Douki, J. B.; Ariey, F.; Berry, A. Lancet Microbe 2023, 4, e983–e993; https://doi.org/10.1016/s2666-5247(23)00211-2.Search in Google Scholar PubMed
7. Gatton, M. L.; Martin, L. B.; Cheng, Q. Antimicrob. Agents Chemother. 2004, 48, 2116–2123; https://doi.org/10.1128/aac.48.6.2116-2123.2004.Search in Google Scholar PubMed PubMed Central
8. Yuvaniyama, J.; Chitnumsub, P.; Kamchonwongpaisan, S.; Vanichtanankul, J.; Sirawaraporn, W.; Taylor, P.; Walkinshaw, M. D.; Yuthavong, Y. Nat. Struct. Biol. 2003, 10, 357–365; https://doi.org/10.1038/nsb921.Search in Google Scholar PubMed
9. Hermawan, F.; Jumina, J.; Pranowo, H. D.; Sholikhah, E. N.; Iresha, M. R. Indones. J. Chem. 2022, 22, 263–271; https://doi.org/10.22146/ijc.69448.Search in Google Scholar
10. Gomes, M. N.; Muratov, E. N.; Pereira, M.; Peixoto, J. C.; Rosseto, L. P.; Cravo, P. V. L.; Andrade, C. H.; Neves, B. J. Molecules; https://doi.org/10.3390/molecules22081210.Search in Google Scholar PubMed PubMed Central
11. Kalaskar, M. G.; Surana, S. J. Anc. Sci. Life 2012, 32, 107–111; https://doi.org/10.4103/0257-7941.118550.Search in Google Scholar PubMed PubMed Central
12. Pereira, V. D. J.; Auxiliadora, M.; Kaplan, C. Floresta e Ambient. 2013, 20, 1–15.10.4322/floram.2012.075Search in Google Scholar
13. da Silva, L.; Donato, I. A.; Gonçalves, C. A. C.; Scherf, J. R.; dos Santos, H. S.; Mori, E.; Coutinho, H. D. M.; da Cunha, F. A. B. 3 Biotech 2023, 13, 1–30.10.1007/s13205-022-03398-7Search in Google Scholar PubMed PubMed Central
14. Qin, H. L.; Zhang, Z. W.; Lekkala, R.; Alsulami, H.; Rakesh, K. P. Eur. J. Med. Chem. 2020, 193, 112215; https://doi.org/10.1016/j.ejmech.2020.112215.Search in Google Scholar PubMed
15. Smit, F. J.; N’Da, D. D. Bioorg. Med. Chem. 2014, 22, 1128–1138.10.1016/j.bmc.2013.12.032Search in Google Scholar PubMed
16. Yadav, N.; Dixit, S. K.; Bhattacharya, A.; Mishra, L. C.; Sharma, M.; Awasthi, S. K.; Bhasin, V. K. Chem. Biol. Drug Des. 2012, 80, 340–347; https://doi.org/10.1111/j.1747-0285.2012.01383.x.Search in Google Scholar PubMed
17. Mulyana, F. E.; Waskitha, S. S. W.; Pranowo, D.; Khairuddean, M.; Wahyumingsih, T. D. Pharmacia 2023, 70, 1305–1313; https://doi.org/10.3897/pharmacia.70.e107406.Search in Google Scholar
18. Waskitha, S. S. W.; Mulyana, F. E.; Riza, N. F.; Stansyah, Y. M.; Tahir, I.; Wahyuningsih, T. D. Rasayan J. Chem. 2021, 14, 2363–2370; https://doi.org/10.31788/rjc.2021.1445867.Search in Google Scholar
19. Syahri, J.; Yuanita, E.; Nurohmah, B. A.; Armunanto, R.; Purwono, B. Asian Pac. J. Trop. Biomed. 2017, 7, 675–679; https://doi.org/10.1016/j.apjtb.2017.07.004.Search in Google Scholar
20. Singh, P.; Anand, A.; Kumar, V. Eur. J. Med. Chem. 2014, 85, 758–777; https://doi.org/10.1016/j.ejmech.2014.08.033.Search in Google Scholar PubMed
21. Elkanzi, N. A. A.; Hrichi, H.; Alolayan, R. A.; Derafa, W.; Zahou, F. M.; Bakr, R. B. ACS Omega 2022, 7, 27769–27786; https://doi.org/10.1021/acsomega.2c01779.Search in Google Scholar PubMed PubMed Central
22. Rudrapal, M.; Khan, J.; Bin Dukhyil, A. A.; Alarousy, R. M. I. I.; Attah, E. I.; Sharma, T.; Khairnar, S. J.; Bendale, A. R. Molecules 2021, 26, 1–21.10.3390/molecules26237177Search in Google Scholar PubMed PubMed Central
23. Wiratama, M.; Satria, S.; Waskitha, W.; Haryadi, W.; Wahyuningsih, T. D. Trop. J. Pharm. Res. 2022, 21, 1255–1261; https://doi.org/10.4314/tjpr.v21i6.18.Search in Google Scholar
24. Jasim, H. A.; Nahar, L.; Jasim, M. A.; Moore, S. A.; Ritchie, K. J.; Sarker, S. D. Biomolecules; https://doi.org/10.3390/biom11081203.Search in Google Scholar PubMed PubMed Central
25. Meanwell, N. A. J. Med. Chem. 2011, 54, 2529–2591; https://doi.org/10.1021/jm1013693.Search in Google Scholar PubMed
26. Go, M.-L.; Liu, M.; Wilairat, P.; Rosenthal, P. J.; Saliba, K. J.; Kirk, K. Antimicrob. Agents Chemother. 2004, 48, 3241–3245; https://doi.org/10.1128/aac.48.9.3241-3245.2004.Search in Google Scholar
27. Akolkar, H. N.; Dengale, S. G.; Deshmukh, K. K.; Karale, B. K.; Darekar, N. R.; Khedkar, V. M.; Shaikh, M. H. Polycycl. Aromat. Compd. 2022, 42, 1959–1971; https://doi.org/10.1080/10406638.2020.1821231.Search in Google Scholar
28. Deepika, C.; Isha, R.; Jyoti, M.; Rajat, G.; Asif, H.; Prabha, G.; Sukhbir, K. L.; Cent. Nerv. Syst. Agents Med. Chem. 2022, 22, 39–56.Search in Google Scholar
29. Mahmud, A. W.; Shallangwa, G. A.; Uzairu, A. Bull. Natl. Res. Cent.; https://doi.org/10.1186/s42269-020-00333-9.Search in Google Scholar
30. Mahapatra, D. K.; Bharti, S. K.; Asati, V. Eur. J. Med. Chem. 2015, 101, 496–524; https://doi.org/10.1016/j.ejmech.2015.06.052.Search in Google Scholar PubMed
31. Cativiela, C.; Garcia, J. I. Can. J. Chem. 1990, 68, 1477–1481; https://doi.org/10.1139/v90-226.Search in Google Scholar
32. Simmler, C.; Lankin, D. C.; Nikolić, D.; van Breemen, R. B.; Pauli, G. F. Fitoterapia 2017, 121, 6–15; https://doi.org/10.1016/j.fitote.2017.06.017.Search in Google Scholar PubMed PubMed Central
33. Suma, A. A. T.; Wahyuningsih, T. D.; Mustofa. Rasayan J. Chem. 2019, 12, 502–510.10.31788/RJC.2019.1225020Search in Google Scholar
34. Dziągwa-Becker, M.; Oleszek, M.; Zielińska, S.; Oleszek, W. Molecules 2024, 29, 1–11.10.3390/molecules29102247Search in Google Scholar PubMed PubMed Central
35. Sinha, S.; Batovska, D. I.; Medhi, B.; Radotra, B. D.; Bhalla, A.; Markova, N.; Sehgal, R. Malar. J. 2019, 18, 421; https://doi.org/10.1186/s12936-019-3060-z.Search in Google Scholar PubMed PubMed Central
36. Batista, R.; De Jesus Silva Júnior, A.; De Oliveira, A. B. Molecules 2009, 14, 3037–3072.10.3390/molecules14083037Search in Google Scholar PubMed PubMed Central
37. Patel, K.; Karthikeyan, C.; Raja Solomon, V.; Hari Narayana Moorthy, N. S.; Lee, H.; Sahu, K.; Singh Deora, G.; Trivedi, P. Lett. Drug Des. Discov. 2011, 8, 308–311; https://doi.org/10.2174/157018011794839475.Search in Google Scholar
38. Tomar, V.; Bhattacharjee, G.; Kamaluddin; Rajakumar, S.; Srivastava, K.; Puri, S. K. Eur. J. Med. Chem. 2010, 45, 745–751; https://doi.org/10.1016/j.ejmech.2009.11.022.Search in Google Scholar PubMed
39. Kufareva, I.; Abagyan, R. Methods Mol. Biol. 2012, 857, 231–257; https://doi.org/10.1007/978-1-61779-588-6_10.Search in Google Scholar PubMed PubMed Central
40. Vanichtanankul, J.; Taweechai, S.; Yuvaniyama, J.; Vilaivan, T.; Chitnumsub, P.; Kamchonwongpaisan, S.; Yuthavong, Y. ACS Chem. Biol. 2011, 6, 905–911; https://doi.org/10.1021/cb200124r.Search in Google Scholar PubMed
41. Pinzi, L.; Rastelli, G. Int. J. Mol. Sci. 2019, 20, 4331; https://doi.org/10.3390/ijms20184331.Search in Google Scholar PubMed PubMed Central
42. Lemcke, T.; Christensen, I. T.; Jørgensen, F. S. Bioorg. Med. Chem. 1999, 7, 1003–1011; https://doi.org/10.1016/s0968-0896(99)00018-8.Search in Google Scholar PubMed
43. Pegu, D.; Deb, J.; Van Alsenoy, C.; Sarkar, U. Spectrosc. Lett. 2017, 50, 232–243; https://doi.org/10.1080/00387010.2017.1308381.Search in Google Scholar
44. Lipinski, C. A. Drug Discov. Today Technol. 2004, 1, 337–341; https://doi.org/10.1016/j.ddtec.2004.11.007.Search in Google Scholar PubMed
45. Wang, N. N.; Huang, C.; Dong, J.; Yao, Z. J.; Zhu, M. F.; Deng, Z. K.; Lv, B.; Lu, A. P.; Chen, A. F.; Cao, D. S. RSC Adv. 2017, 7, 19007–19018; https://doi.org/10.1039/c6ra28442f.Search in Google Scholar
46. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, D. J. F. K.; Montgomery, J. A.Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; J. M. M; 2016.Search in Google Scholar
47. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605–1612; https://doi.org/10.1002/jcc.20084.Search in Google Scholar PubMed
48. Trott, O.; Olson, A. J. J. Comput. Chem. 2009, 31; https://doi.org/10.1002/jcc.21334.Search in Google Scholar PubMed PubMed Central
49. D. S. BIOVIA, 2020.Search in Google Scholar
50. Koopmans, T. Physica 1934, 1, 104–113; https://doi.org/10.1016/s0031-8914(34)90011-2.Search in Google Scholar
51. Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580–592; https://doi.org/10.1002/jcc.22885.Search in Google Scholar PubMed
52. Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33–38; https://doi.org/10.1016/0263-7855(96)00018-5.Search in Google Scholar PubMed
53. Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. Nucleic Acids Res. 2021, 49, W5–W14; https://doi.org/10.1093/nar/gkab255.Search in Google Scholar PubMed PubMed Central
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2024-0330).
© 2025 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Preface: 9th International Conference for Young Chemists (ICYC) 2024
- Research Articles
- Doping TiO2 with Cu from electroplating wastewater for remarkable improvement of its activity under visible light for E. coli bacterial disinfection in water
- Investigating the potential of prenylated and geranylated acylphloroglucinol-based xanthenones as potent soybean 15-lipoxygenase inhibitors: a combined in vitro and in silico approach
- Intelligent food packaging from Ganyong starch (Canna Edulis Kerr.) modified with nanocellulose from corn husk (Zea mays) and curcumin as bioindicator
- Evaluation of 2-(1H-1,2,3-triazol-1-yl) acetic acid derivatives as potential human hypoxia-inducible factor (HIF) prolyl hydroxylase domain-2 (PHD2) inhibitors
- Microparticles zerumbone from Zingiber zerumbet rhizome in chitosan modified oleic acid
- Enhanced visible photocatalytic degradation of diclofenac by ultrasound-assisted prepared C and N co-doping TiO2
- Enhanced stability and permeability of graphene oxide nanocomposite membranes via glycine and diglycine cross-linking
- Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Preface: 9th International Conference for Young Chemists (ICYC) 2024
- Research Articles
- Doping TiO2 with Cu from electroplating wastewater for remarkable improvement of its activity under visible light for E. coli bacterial disinfection in water
- Investigating the potential of prenylated and geranylated acylphloroglucinol-based xanthenones as potent soybean 15-lipoxygenase inhibitors: a combined in vitro and in silico approach
- Intelligent food packaging from Ganyong starch (Canna Edulis Kerr.) modified with nanocellulose from corn husk (Zea mays) and curcumin as bioindicator
- Evaluation of 2-(1H-1,2,3-triazol-1-yl) acetic acid derivatives as potential human hypoxia-inducible factor (HIF) prolyl hydroxylase domain-2 (PHD2) inhibitors
- Microparticles zerumbone from Zingiber zerumbet rhizome in chitosan modified oleic acid
- Enhanced visible photocatalytic degradation of diclofenac by ultrasound-assisted prepared C and N co-doping TiO2
- Enhanced stability and permeability of graphene oxide nanocomposite membranes via glycine and diglycine cross-linking
- Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition