Home Enhanced stability and permeability of graphene oxide nanocomposite membranes via glycine and diglycine cross-linking
Article
Licensed
Unlicensed Requires Authentication

Enhanced stability and permeability of graphene oxide nanocomposite membranes via glycine and diglycine cross-linking

  • Zhen Hong Chang ORCID logo , Yeit Haan Teow , Swee Pin Yeap and Jing Yao Sum EMAIL logo
Published/Copyright: March 26, 2025

Abstract

Surface coating of graphene oxide (GO) on membrane surfaces often suffers from low stability, with the GO layer prone to swelling and detachment during filtration. Cross-linking with environmentally friendly amino acids is expected to enhance the interfacial interaction between GO nanosheets and membrane surface via van der Waals interactions. This study introduces glycine (Gly) and diglycine (diGly) as cross-linking agents to improve the stability and performance of GO nanocomposite membranes. Field emission scanning electron microscopy (FESEM) images revealed that amino acid-crosslinked GO formed a thick pile structure on the membrane surface. The chemical bonding between GO and glycine derivatives was confirmed by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analyses. Stability test via continuously running water across the membrane surface in a crossflow filtration cell showed that cross-linking with glycine derivatives reduces the tendency of GO detachment from the self-fabricated polyethersulfone (PES) membrane surface. Ultrafiltration tests demonstrated that water permeability of nanocomposite membranes increased in the order of diGly-GO (14.70 LMH bar−1) > Gly-GO (8.66 LMH bar−1) > GO (4.57 LMH bar−1), without compromising bovine serum albumin (BSA) rejection efficiency (82–84 %). However, the reduction of hydroxyl groups in Gly-GO and diGly-GO nanocomposite membranes made them more susceptible to BSA fouling. Consequently, the pristine GO nanocomposite membrane exhibited the lowest flux declination rate and the highest flux recovery rate among the membranes. Overall, the results indicate that cross-linking GO nanosheets with glycine derivatives enhances membrane permeability and stability by improving the stacking of GO nanosheets.


Corresponding author: Jing Yao Sum, Department of Chemical and Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, 56000 Kuala Lumpur, Malaysia; and UCSI-Cheras Low Carbon Innovation Hub Research Consortium, Kuala Lumpur, Malaysia, e-mail:
Article note: A collection of invited papers based on presentations at the 9th International Conference for Young Chemists (ICYC 2024) held on 9–11 Oct 2024 in Penang, Malaysia.

Acknowledgments

The authors gratefully acknowledge CERVIE, UCSI University and research grants REIG-FETBE-2023/016 for the financial support.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: ChatGPT 4o was used to improve language.

  5. Conflict of interest: Authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Qadir, M.; Drechsel, P.; Jiménez Cisneros, B.; Kim, Y.; Pramanik, A.; Mehta, P.; Olaniyan, O. Global and Regional Potential of Wastewater as a Water, Nutrient and Energy Source. Nat. Resour. Forum. 2020, 44, 40–51. https://doi.org/10.1111/1477-8947.12187.Search in Google Scholar

2. UN-Water. The United Nations World Water Development Report, Wastewater: The Untapped Resource, 2017. Available from: https://www.unep.org/resources/publication/2017-un-world-water-development-report-wastewater-untapped-resource.Search in Google Scholar

3. Fito, J.; Van Hulle, S. W. H. Wastewater Reclamation and Reuse Potentials in Agriculture: Towards Environmental Sustainability. Environ. Dev. Sustain. 2021, 23, 2949–2972. https://doi.org/10.1007/s10668-020-00732-y.Search in Google Scholar

4. Ouyang, W.; Chen, T.; Shi, Y.; Tong, L.; Chen, Y.; Wang, W.; Yang, J.; Xue, J. Physico-chemical Processes. Water Environ. Res. 2019, 91, 1350–1377. https://doi.org/10.1002/wer.1231.Search in Google Scholar PubMed

5. Karki, S.; Hazarika, G.; Yadav, D.; Ingole, P. G. Polymeric Membranes for Industrial Applications: Recent Progress, Challenges and Perspectives. Desalination 2024, 573, 117200. https://doi.org/10.1016/j.desal.2023.117200.Search in Google Scholar

6. Chang, Z. H.; Sum, J. Y.; Lau, W. J.; Ang, W. L.; Teow, Y. H.; Ooi, B. S.; Yeap, S. P. Current State-of-the-Art of Non-reverse Osmosis-Like Forward Osmosis Technology. J. Memb. Sci. 2024, 711, 123209. https://doi.org/10.1016/j.memsci.2024.123209.Search in Google Scholar

7. Wang, S.; Li, Q.; He, B.; Gao, M.; Ji, Y.; Cui, Z.; Yan, F.; Ma, X.; Younas, M.; Li, J. Preparation of Small-Pore Ultrafiltration Membranes with High Surface Porosity by In Situ CO2 Nanobubble-Assisted NIPS. ACS Appl. Mater. Interfaces. 2022, 14, 8633–8643. https://doi.org/10.1021/acsami.1c23760.Search in Google Scholar PubMed

8. Yang, Z.; Zhou, Y.; Feng, Z.; Rui, X.; Zhang, T.; Zhang, Z. A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification. Polymers (Basel) 2019, 11, 1–22. https://doi.org/10.3390/polym11081252.Search in Google Scholar PubMed PubMed Central

9. Ma, C.; Hu, J.; Sun, W.; Ma, Z.; Yang, W.; Wang, L.; Ran, Z.; Zhao, B.; Zhang, Z.; Zhang, H. Graphene Oxide-Polyethylene Glycol Incorporated PVDF Nanocomposite Ultrafiltration Membrane with Enhanced Hydrophilicity, Permeability, and Antifouling Performance. Chemosphere 2020, 253, 126649. https://doi.org/10.1016/j.chemosphere.2020.126649.Search in Google Scholar PubMed

10. Alkhouzaam, A.; Qiblawey, H. Novel Polysulfone Ultrafiltration Membranes Incorporating Polydopamine Functionalized Graphene Oxide with Enhanced Flux and Fouling Resistance. J. Memb. Sci. 2021, 620, 118900. https://doi.org/10.1016/j.memsci.2020.118900.Search in Google Scholar

11. Cihanoğlu, A.; Altinkaya, S. A. A Facile Route to the Preparation of Antibacterial Polysulfone-Sulfonated Polyethersulfone Ultrafiltration Membranes Using a Cationic Surfactant Cetyltrimethylammonium Bromide. J. Memb. Sci. 2020, 594, 117438. https://doi.org/10.1016/j.memsci.2019.117438.Search in Google Scholar

12. Hu, M.; Zhao, L.; Yu, N.; Tian, Z.; Yin, Z.; Yang, Z.; Yang, W.; Graham, N. J. D. Application of Ultra-Low Concentrations of Moderately-Hydrophobic Chitosan for Ultrafiltration Membrane Fouling Mitigation. J. Memb. Sci. 2021, 635, 119540. https://doi.org/10.1016/j.memsci.2021.119540.Search in Google Scholar

13. Escobar, I. C.; Van Der Bruggen, B. Microfiltration and Ultrafiltration Membrane Science and Technology. J. Appl. Polym. Sci. 2015, 132. https://doi.org/10.1002/app.42002.Search in Google Scholar

14. Loh, S. T.; Beuscher, U.; Poddar, T. K.; Porter, A. G.; Wingard, J. M.; Husson, S. M.; Wickramasinghe, S. R. Interplay Among Membrane Properties, Protein Properties and Operating Conditions on Protein Fouling during Normal-Flow Microfiltration. J. Memb. Sci. 2009, 332, 93–103. https://doi.org/10.1016/j.memsci.2009.01.031.Search in Google Scholar

15. Tanudjaja, H. J.; Anantharaman, A.; Ng, A. Q. Q.; Ma, Y.; Tanis-Kanbur, M. B.; Zydney, A. L.; Chew, J. W. A Review of Membrane Fouling by Proteins in Ultrafiltration and Microfiltration. J. Water Process Eng. 2022, 50, 103294. https://doi.org/10.1016/j.jwpe.2022.103294.Search in Google Scholar

16. Abood, T.; Shabeeb, K.; Alzubaydi, A.; Goh, P.; Ismail, A.; Zrelli, A.; Alsalhy, Q. Effect of MXene Ti3C2 on the PVDF Ultrafiltration Membrane Properties and Performance. Eng. Technol. J. 2024, 0, 1–14. 0 https://doi.org/10.30684/etj.2024.145778.1663.Search in Google Scholar

17. Farahbakhsh, J.; Najafi, M.; Golgoli, M.; Asif, A. H.; Khiadani, M.; Razmjou, A.; Zargar, M. Microplastics and Dye Removal from Textile Wastewater using MIL-53 (Fe) Metal-Organic Framework-Based Ultrafiltration Membranes. Chemosphere 2024, 364, 143170. https://doi.org/10.1016/j.chemosphere.2024.143170.Search in Google Scholar PubMed

18. Xu, W.; Sun, X.; Huang, M.; Pan, X.; Huang, X.; Zhuang, H. Novel Covalent Organic Framework/PVDF Ultrafiltration Membranes with Antifouling and Lead Removal Performance. J. Environ. Manage. 2020, 269, 110758. https://doi.org/10.1016/j.jenvman.2020.110758.Search in Google Scholar PubMed

19. Wang, C.; Zhang, L.; Yuan, H.; Fu, Y.; Zeng, Z.; Lu, J. Preparation of a PES/PFSA-g-MWCNT Ultrafiltration Membrane with Improved Permeation and Antifouling Properties. New J. Chem. 2021, 45, 4950–4962. https://doi.org/10.1039/D0NJ05322H.Search in Google Scholar

20. Ding, A.; Ren, Z.; Zhang, Y.; Ma, J.; Bai, L.; Wang, B.; Cheng, X. Evaluations of Holey Graphene Oxide Modified Ultrafiltration Membrane and the Performance for Water Purification. Chemosphere 2021, 285, 131459. https://doi.org/10.1016/j.chemosphere.2021.131459.Search in Google Scholar PubMed

21. Zhang, P.; Wang, Y.; Li, P.; Luo, X.; Feng, J.; Kong, H.; Li, T.; Wang, W.; Duan, X.; Liu, Y.; Li, M. Improving Stability and Separation Performance of Graphene Oxide/Graphene Nanofiltration Membranes by Adjusting the Laminated Regularity of Stacking-Sheets. Sci. Total Environ. 2022, 827, 154175. https://doi.org/10.1016/j.scitotenv.2022.154175.Search in Google Scholar PubMed

22. Chen, J.; Dai, F.; Zhang, L.; Xu, J.; Liu, W.; Zeng, S.; Xu, C.; Chen, L.; Dai, C. Molecular Insights into the Dispersion Stability of Graphene Oxide in Mixed Solvents: Theoretical Simulations and Experimental Verification. J. Colloid Interface Sci. 2020, 571, 109–117. https://doi.org/10.1016/j.jcis.2020.03.036.Search in Google Scholar PubMed

23. Junaidi, N. F. D.; Othman, N. H.; Fuzil, N. S.; Mat Shayuti, M. S.; Alias, N. H.; Shahruddin, M. Z.; Marpani, F.; Lau, W. J.; Ismail, A. F.; Aba, N. F. D. Recent Development of Graphene Oxide-Based Membranes for Oil–Water Separation: A Review. Sep. Purif. Technol. 2021, 258, 118000. https://doi.org/10.1016/j.seppur.2020.118000.Search in Google Scholar

24. Anegbe, B.; Ifijen, I. H.; Maliki, M.; Uwidia, I. E.; Aigbodion, A. I. Graphene Oxide Synthesis and Applications in Emerging Contaminant Removal: A Comprehensive Review. Environ. Sci. Eur. 2024, 36, 15. https://doi.org/10.1186/s12302-023-00814-4.Search in Google Scholar

25. Kong, S.; young Lim, M.; Shin, H.; Baik, J. H.; Lee, J. C. High-Flux and Antifouling Polyethersulfone Nanocomposite Membranes Incorporated with Zwitterion-Functionalized Graphene Oxide for Ultrafiltration Applications. J. Ind. Eng. Chem. 2020, 84, 131–140. https://doi.org/10.1016/j.jiec.2019.12.028.Search in Google Scholar

26. Zhang, X.; Zhao, F.; Yang, L.; Geng, C.; Park, H. D.; Chen, H.; Li, Z.; Yang, Y. Constructing Quaternized Graphene Oxide Filtration Layer on PVDF Membrane by a Facile Strategy via Dopamine Crosslinking and Its Performance. J. Environ. Chem. Eng. 2023, 11, 111611. https://doi.org/10.1016/j.jece.2023.111611.Search in Google Scholar

27. Chu, J.; Huang, Q.; Dong, Y.; Yao, Z.; Wang, J.; Qin, Z.; Ning, Z.; Xie, J.; Tian, W.; Yao, H.; Bai, J. Enrichment of Uranium in Seawater by Glycine Cross-Linked Graphene Oxide Membrane. Chem. Eng. J. 2022, 444, 136602. https://doi.org/10.1016/j.cej.2022.136602.Search in Google Scholar

28. Hua Li, J.; Shuang Wang, S.; Bin Zhang, D.; Xing Ni, X.; Qing Zhang, Q. Amino Acids Functionalized Graphene Oxide for Enhanced Hydrophilicity and Antifouling Property of Poly(vinylidene fluoride) Membranes. Chinese J. Polym. Sci. (English Ed.) 2016, 34, 805–819. https://doi.org/10.1007/s10118-016-1808-2.Search in Google Scholar

29. Ai, J.; Yang, L.; Liao, G.; Xia, H.; Xiao, F. Applications of Graphene Oxide Blended Poly(vinylidene fluoride) Membranes for the Treatment of Organic Matters and Its Membrane Fouling Investigation. Appl. Surf. Sci. 2018, 455, 502–512. https://doi.org/10.1016/j.apsusc.2018.05.162.Search in Google Scholar

30. Méricq, J. P.; Mendret, J.; Brosillon, S.; Faur, C. High Performance PVDF-TiO2 Membranes for Water Treatment. Chem. Eng. Sci. 2015, 123, 283–291. https://doi.org/10.1016/j.ces.2014.10.047.Search in Google Scholar

31. Wu, W.; Zhang, X.; Qin, L.; Li, X.; Meng, Q.; Shen, C.; Zhang, G. Enhanced MPBR with Polyvinylpyrrolidone-Graphene Oxide/PVDF Hollow Fiber Membrane for Efficient Ammonia Nitrogen Wastewater Treatment and High-Density Chlorella Cultivation. Chem. Eng. J. 2020, 379, 122368. https://doi.org/10.1016/j.cej.2019.122368.Search in Google Scholar

32. Yuan, Y.; Gao, X.; Wei, Y.; Wang, X.; Wang, J.; Zhang, Y.; Gao, C. Enhanced Desalination Performance of Carboxyl Functionalized Graphene Oxide Nanofiltration Membranes. Desalination 2017, 405, 29–39. https://doi.org/10.1016/j.desal.2016.11.024.Search in Google Scholar

33. Yang, R.; Fan, Y.; Yu, R.; Dai, F.; Lan, J.; Wang, Z.; Chen, J.; Chen, L. Robust Reduced Graphene Oxide Membranes with High Water Permeance Enhanced by K+ Modification. J. Memb. Sci. 2021, 635, 119437. https://doi.org/10.1016/j.memsci.2021.119437.Search in Google Scholar

34. Cheng, W.; Lu, X.; Kaneda, M.; Zhang, W.; Bernstein, R.; Ma, J.; Elimelech, M. Graphene Oxide-Functionalized Membranes: The Importance of Nanosheet Surface Exposure for Biofouling Resistance. Environ. Sci. Technol. 2020, 54, 517–526. https://doi.org/10.1021/acs.est.9b05335.Search in Google Scholar PubMed

35. Kwon, O.; Choi, Y.; Choi, E.; Kim, M.; Woo, Y. C.; Kim, D. W. Fabrication Techniques for Graphene Oxide‐Based Molecular Separation Membranes: Towards Industrial Application. Nanomaterials 2021, 11, 1–15. https://doi.org/10.3390/nano11030757.Search in Google Scholar PubMed PubMed Central

36. Yu, J.; He, Y.; Wang, Y.; Li, S.; Tian, S. Ethylenediamine-Oxidized Sodium Alginate Hydrogel Cross-Linked Graphene Oxide Nanofiltration Membrane with Self-Healing Property for Efficient Dye Separation. J. Memb. Sci. 2023, 670, 121366. https://doi.org/10.1016/j.memsci.2023.121366.Search in Google Scholar

37. Zheng, S.; Tu, Q.; Urban, J. J.; Li, S.; Mi, B. Swelling of Graphene Oxide Membranes in Aqueous Solution: Characterization of Interlayer Spacing and Insight into Water Transport Mechanisms. ACS Nano 2017, 11, 6440–6450. https://doi.org/10.1021/acsnano.7b02999.Search in Google Scholar PubMed

38. Piñeiro-García, A.; Tristan, F.; Meneses-Rodríguez, D.; Semetey, V.; Vega-Díaz, S. M. Tuning the Nucleophilic Attack and the Reductive Action of Glycine on Graphene Oxide Under Basic Medium. Mater. Today Chem. 2021, 19, 100386. https://doi.org/10.1016/j.mtchem.2020.100386.Search in Google Scholar

39. Thien, G. S. H.; Omar, F. S.; Blya, N. I. S. A.; Chiu, W. S.; Lim, H. N.; Yousefi, R.; Sheini, F. J.; Huang, N. M. Improved Synthesis of Reduced Graphene Oxide-Titanium Dioxide Composite with Highly Exposed {001} Facets and Its Photoelectrochemical Response. Int. J. Photoenergy. 2014, 2014, 1–9. https://doi.org/10.1155/2014/650583.Search in Google Scholar

40. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. https://doi.org/10.1021/nn1006368.Search in Google Scholar PubMed

41. Pytlakowska, K.; Kozik, V.; Matussek, M.; Pilch, M.; Hachuła, B.; Kocot, K. Glycine Modified Graphene Oxide as a Novel Sorbent for Preconcentration of Chromium, Copper, and Zinc Ions from Water Samples Prior to Energy Dispersive X-ray Fluorescence Spectrometric Determination. RSC Adv. 2016, 6, 42836–42844. https://doi.org/10.1039/c6ra03662g.Search in Google Scholar

42. Wu, Z.; Gao, L.; Wang, J.; Zhao, F.; Fan, L.; Hua, D.; Japip, S.; Xiao, J.; Zhang, X.; Zhou, S. F.; Zhan, G. Preparation of Glycine Mediated Graphene Oxide/g-C3N4 Lamellar Membranes for Nanofiltration. J. Memb. Sci. 2020, 601, 117948. https://doi.org/10.1016/j.memsci.2020.117948.Search in Google Scholar

43. Rossi-Fernández, A. C.; Villegas-Escobar, N.; Guzmán-Angel, D.; Gutiérrez-Oliva, S.; Ferullo, R. M.; Castellani, N. J.; Toro-Labbé, A. Theoretical Study of Glycine Amino Acid Adsorption on Graphene Oxide. J. Mol. Model. 2020, 26, 33. https://doi.org/10.1007/s00894-020-4297-8.Search in Google Scholar PubMed

44. Hidayah, N. M. S.; Liu, W. W.; Lai, C. W.; Noriman, N. Z.; Khe, C. S.; Hashim, U.; Lee, H. C. Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization. AIP Conf. Proc. 2017, 1892. https://doi.org/10.1063/1.5005764.Search in Google Scholar

45. Liu, J.; Wang, S.; Yang, R.; Li, L.; Liang, S.; Chen, L. Bio-inspired Graphene Oxide-Amino Acid Cross-Linked Framework Membrane Trigger High Water Permeance and High Metal Ions rejection. J. Memb. Sci. 2022, 659, 120745. https://doi.org/10.1016/j.memsci.2022.120745.Search in Google Scholar

46. Valizadeh, S.; Naji, L.; Karimi, M. Controlling Interlayer Spacing of Graphene Oxide Membrane in Aqueous Media Using a Biocompatible Heterobifunctional Crosslinker for Penicillin-G Procaine Removal. Sep. Purif. Technol. 2021, 263, 118392. https://doi.org/10.1016/j.seppur.2021.118392.Search in Google Scholar

47. Hung, W. S.; An, Q. F.; De Guzman, M.; Lin, H. Y.; Huang, S. H.; Liu, W. R.; Hu, C. C.; Lee, K. R.; Lai, J. Y. Pressure-Assisted Self-Assembly Technique for Fabricating Composite Membranes Consisting of Highly Ordered Selective Laminate Layers of Amphiphilic Graphene Oxide. Carbon N. Y. 2014, 68, 670–677. https://doi.org/10.1016/j.carbon.2013.11.048.Search in Google Scholar

48. Mi, B. Graphene Oxide Membranes for Ionic and Molecular Sieving. Science 2014, 343, 740–742. https://doi.org/10.1126/science.1250247.Search in Google Scholar PubMed

49. Hut, N. A.; Goh, P. S.; Ahmad, N. A.; Kang, H. S.; Wong, K. C.; Syfina, N. A.; Ismail, A. F. Surface Decoration of Polyethylene Terephthalate (PET) Waste Bottle-Derived Ultrafiltration Membrane for Enhanced Lead Ion Removal and Antifouling Properties. J. Environ. Chem. Eng. 2024, 12, 111766. https://doi.org/10.1016/j.jece.2023.111766.Search in Google Scholar

50. Davari, S.; Omidkhah, M.; Salari, S. Role of Polydopamine in the Enhancement of Binding Stability of TiO2 Nanoparticles on Polyethersulfone Ultrafiltration Membrane. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126694. https://doi.org/10.1016/j.colsurfa.2021.126694.Search in Google Scholar

51. Abdi, S.; Nasiri, M.; Yuan, S.; Zhu, J.; Van der Bruggen, B. Fabrication of PES-Based Super-Hydrophilic Ultrafiltration Membranes by Combining Hydrous Ferric Oxide Particles and UV Irradiation. Sep. Purif. Technol. 2021, 259, 118132. https://doi.org/10.1016/j.seppur.2020.118132.Search in Google Scholar

52. Zhang, H.; Wang, F.; Guo, Z. The Antifouling Mechanism and Application of Bio-inspired Superwetting Surfaces with Effective Antifouling Performance. Adv. Colloid Interface Sci. 2024, 325, 103097. https://doi.org/10.1016/j.cis.2024.103097.Search in Google Scholar PubMed

53. Ismail, R. A.; Kumar, M.; Thomas, N.; An, A. K.; Arafat, H. A. Multifunctional Hybrid UF Membrane from Poly(ether sulfone) and Quaternized Polydopamine Anchored Reduced Graphene Oxide Nanohybrid for Water Treatment. J. Memb. Sci. 2021, 639, 119779. https://doi.org/10.1016/j.memsci.2021.119779.Search in Google Scholar

Published Online: 2025-03-26
Published in Print: 2025-06-26

© 2025 IUPAC & De Gruyter

Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0265/html
Scroll to top button