Startseite Rethinking chemical production with “green” hydrogen
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Rethinking chemical production with “green” hydrogen

  • Gabriele Centi EMAIL logo und Siglinda Perathoner
Veröffentlicht/Copyright: 3. November 2023

Abstract

This contribution critically addresses the “green” H2 production issue. After introducing the topic and the limits of the production of H2 from electrolysis, some examples of alternative methods are discussed, highlighting the possibility of reducing costs, carbon footprint and intensity of use of renewable energy compared to electrolysis.


Corresponding author: Gabriele Centi, Department ChiBioFarAM of the University of Messina, Messina, Italy; and European Research Institute of Catalysis, Brussels, Belgium, e-mail:
Article note: Invited commentary article based on the lecture “From 1st to 2nd generation technologies to make chemicals via green hydrogen” presented at AVOGADRO COLLOQUIA 2022 – From Water to Chemicals: Vision and Opportunities of a Sustainable Hydrogen Society Rome, 15th – 16th Dec. 2022.
  1. Research funding: This work was financially supported by the European Commission (EU project EreTech – Electrified Reactor Technology, ID 101058608) and MITE (Italian Ministery for Ecological Transition), project MECCA (Green H2 from biomethane cracking through an innovative technology based on non-thermal plasma and nanocarbon catalysis – ID RSH2A_000002).

References

[1] E. Cetinkaya, A. Klei, A. Seitz, G. Winkler. in Securing the Competitiveness of the European Chemical Industry, McKinsey & Company, New York, US (2023), https://www.mckinsey.com/∼/media/mckinsey/industries/chemicals/our%20insights/securing%20the%20competitiveness%20of%20the%20european%20chemical%20industry/securing-the-competitiveness-of-the-european-chemical-industry.pdf.Suche in Google Scholar

[2] J. Schot, L. Kanger. Res. Policy 47, 1045 (2018), https://doi.org/10.1016/j.respol.2018.03.009.Suche in Google Scholar

[3] P. G. Levi, J. M. Cullen. Environ. Sci. Technol. 52, 1725 (2018), https://doi.org/10.1021/acs.est.7b04573.Suche in Google Scholar PubMed

[4] G. Centi, S. Perathoner. Green Chem. 24, 7305 (2022), https://doi.org/10.1039/d2gc01572b.Suche in Google Scholar

[5] M. Patrascu. Chem. Eng. Proc. – Process Intensif. 184, 109291 (2023), https://doi.org/10.1016/j.cep.2023.109291.Suche in Google Scholar

[6] L. Kanger, J. Schot. Environ. Innov. Soc. Trans. 32, 7 (2019), https://doi.org/10.1016/j.eist.2018.07.006.Suche in Google Scholar

[7] G. Centi, G. Iaquaniello, S. Perathoner. BMC Chem. Eng. 1, 5 (2019), https://doi.org/10.1186/s42480-019-0006-8.Suche in Google Scholar

[8] N. Ishii, M. Stuchtey. Planet Positive Chemicals. Pathways for the Chemical Industry to Enable A Sustainable Global Economy, Center for Global Commons, Tokyo (Japan) (2022), https://cgc.ifi.u-tokyo.ac.jp/research/chemistry-industry/planet-positive-chemicals.pdf.Suche in Google Scholar

[9] G. Centi, S. Perathoner. Catal. Today 423, 113935 (2023), https://doi.org/10.1016/j.cattod.2022.1010.1017.Suche in Google Scholar

[10] IEA. in Net Zero by 2050. A Roadmap for the Global Energy Sector, International Energy Agency (IEA), Paris, France (2021), https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf.Suche in Google Scholar

[11] G. Centi, S. Perathoner. Catal. Today 342, 4 (2020), https://doi.org/10.1016/j.cattod.2019.04.003.Suche in Google Scholar

[12] M. Grahn, E. Malmgren, A. D. Korberg, M. Taljegard, J. E. Anderson, S. Brynolf, J. Hansson, I. R. Skov, T. J. Wallington. Prog. Energy 4, 032010 (2022), https://doi.org/10.1088/2516-1083/ac7937.Suche in Google Scholar

[13] H. Singh, C. Li, P. Cheng, X. Wang, Q. Liu. Energy Adv. 1, 580 (2022), https://doi.org/10.1039/d2ya00173j.Suche in Google Scholar

[14] G. Papanikolaou, G. Centi, S. Perathoner, P. LanzafameChi. J. Catal. 43, 1194 (2022), https://doi.org/10.1016/s1872-2067(21)64016-0.Suche in Google Scholar

[15] S. Perathoner, K. M. Van Geem, G. B. Marin, G. Centi. Chem. Commun. 57, 10967 (2021), https://doi.org/10.1039/d1cc03154f.Suche in Google Scholar PubMed

[16] S. G. Nnabuife, J. Ugbeh-Johnson, N. E. Okeke, C. Ogbonnaya. Carbon Capture Sci. Technol. 3, 100042 (2022), https://doi.org/10.1016/j.ccst.2022.100042.Suche in Google Scholar

[17] IEA. in Global Hydrogen Review 2022, International Energy Agency (IEA), Paris, France (2022), https://iea.blob.core.windows.net/assets/c5bc75b1-9e4d-460d-9056-6e8e626a11c4/GlobalHydrogenReview2022.pdf.Suche in Google Scholar

[18] E. B. Agyekum, C. Nutakor, A. M. Agwa, S. Kamel. Membranes 12, 173 (2022), https://doi.org/10.3390/membranes12020173.Suche in Google Scholar PubMed PubMed Central

[19] D. Tarvydas. The role of hydrogen in energy decarbonisation scenarios. Views on 2030 and 2050. In JRC Technical Report, European Union, Luxembourg, Vol. 2, (2022).Suche in Google Scholar

[20] J. A. Riera, R. M. Lima, O. M. Knio. Int. J. Hydrogen Energy 48, 13731 (2023), https://doi.org/10.1016/j.ijhydene.2022.12.242.Suche in Google Scholar

[21] R. W. Howarth, M. Z. Jacobson. Energy Sci. Eng. 9, 1676 (2021), https://doi.org/10.1002/ese3.956.Suche in Google Scholar

[22] A. I. Stankiewicz, H. Nigar. Reaction Chem. Eng. 5, 1005 (2020), https://doi.org/10.1039/d0re00116c.Suche in Google Scholar

[23] N. Tenhumberg, K. Büker. Chem. Ing. Tech. 92, 1586 (2020), https://doi.org/10.1002/cite.202000090.Suche in Google Scholar

[24] M. Wanner. Eur. Phys. J. Plus 136, 593 (2021), https://doi.org/10.1140/epjp/s13360-021-01585-8.Suche in Google Scholar

[25] C. Ampelli, D. Giusi, M. Miceli, T. Merdzhanova, V. Smirnov, U. Chime, O. Astakhov, A. J. Martín, F. L. P. Veenstra, F. A. G. Pineda, J. González-Cobos, M. García-Tecedor, S. Giménez, W. Jaegermann, G. Centi, J. Pérez-Ramírez, J. R. Galán-Mascarós, S. Perathoner. Energy Environ. Sci. 16, 1644 (2023), https://doi.org/10.1039/d2ee03215e.Suche in Google Scholar

[26] G. Centi, S. Perathoner, C. Genovese, R. Arrigo. Chem. Commun. 59, 3005 (2023), https://doi.org/10.1039/d2cc05132j.Suche in Google Scholar PubMed PubMed Central

[27] M. Ji, J. Wang. Int. J. Hydrogen Energy 46, 38612 (2021), https://doi.org/10.1016/j.ijhydene.2021.09.142.Suche in Google Scholar

[28] S. C. Wijayasekera, K. Hewage, O. Siddiqui, P. Hettiaratchi, R. Sadiq. Int. J. Hydrogen Energy 47, 5842 (2022), https://doi.org/10.1016/j.ijhydene.2021.11.226.Suche in Google Scholar

[29] L. Cao, I. K. M. Yu, X. Xiong, D. C. W. Tsang, S. Zhang, J. H. Clark, C. Hu, Y. H. Ng, J. Shang, Y. S. Ok. Environ. Res. 186, 109547 (2020), https://doi.org/10.1016/j.envres.2020.109547.Suche in Google Scholar PubMed

[30] A. Borgogna, G. Centi, G. Iaquaniello, S. Perathoner, G. Papanikolaou, A. Salladini. Sci. Total Environ. 827, 154393 (2022), https://doi.org/10.1016/j.scitotenv.2022.154393.Suche in Google Scholar PubMed

[31] H. Ishaq, I. Dincer, C. Crawford. Int. J. Hydrogen Energy 47, 26238 (2022), https://doi.org/10.1016/j.ijhydene.2021.11.149.Suche in Google Scholar

[32] H. Zhang, Z. Sun, Y. H. Hu. Renewable Sustainable Energy Rev. 149, 111330 (2021), https://doi.org/10.1016/j.rser.2021.111330.Suche in Google Scholar

[33] L. Zheng, M. Ambrosetti, D. Marangoni, A. Beretta, G. Groppi, E. Tronconi. AIChE J. 69, e17620 (2023), https://doi.org/10.1002/aic.17620.Suche in Google Scholar PubMed PubMed Central

[34] S. Renda, M. Cortese, G. Iervolino, M. Martino, E. Meloni, V. Palma. Catal. Today 383, 31 (2022), https://doi.org/10.1016/j.cattod.2020.11.020.Suche in Google Scholar

[35] M. Rieks, R. Bellinghausen, N. Kockmann, L. Mleczko. Int. J. Hydrogen Energy 40, 15940 (2015), https://doi.org/10.1016/j.ijhydene.2015.09.113.Suche in Google Scholar

[36] S. T. Wismann, J. S. Engbæk, S. B. Vendelbo, F. B. Bendixen, W. L. Eriksen, K. Aasberg-Petersen, C. Frandsen, I. Chorkendorff, P. M. Mortensen. Science 364, 756 (2019), https://doi.org/10.1126/science.aaw8775.Suche in Google Scholar PubMed

[37] Y. R. Lu, P. A. Nikrityuk. Chem. Eng. Sci. 251, 117446 (2022), https://doi.org/10.1016/j.ces.2022.117446.Suche in Google Scholar

[38] J. X. Qian, T. W. Chen, L. R. Enakonda, D. B. Liu, G. Mignani, J.-M. Basset, L. Zhou. Int. J. Hydrogen Energy 45, 7981 (2020), https://doi.org/10.1016/j.ijhydene.2020.01.052.Suche in Google Scholar

[39] C. Q. Pham, T. J. Siang, P. S. Kumar, Z. Ahmad, L. Xiao, M. B. Bahari, A. N. T. Cao, N. Rajamohan, A. S. Qazaq, A. Kumar, P. L. Show, D.-V. N. Vo. Environ. Chem. Lett. 20, 2339 (2022), https://doi.org/10.1007/s10311-022-01449-2.Suche in Google Scholar

[40] N. Sánchez-Bastardo, R. Schlögl, H. Ruland. Ind. Eng. Chem. Res. 60, 11855 (2021), https://doi.org/10.1021/acs.iecr.1c01679.Suche in Google Scholar

[41] T. I. Korányi, M. Németh, A. Beck, A. Horváth. Energies 15, 6342 (2022), https://doi.org/10.3390/en15176342.Suche in Google Scholar

Published Online: 2023-11-03
Published in Print: 2024-04-25

© 2023 IUPAC & De Gruyter

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-0804/html
Button zum nach oben scrollen