Abstract
This contribution critically addresses the “green” H2 production issue. After introducing the topic and the limits of the production of H2 from electrolysis, some examples of alternative methods are discussed, highlighting the possibility of reducing costs, carbon footprint and intensity of use of renewable energy compared to electrolysis.
-
Research funding: This work was financially supported by the European Commission (EU project EreTech – Electrified Reactor Technology, ID 101058608) and MITE (Italian Ministery for Ecological Transition), project MECCA (Green H2 from biomethane cracking through an innovative technology based on non-thermal plasma and nanocarbon catalysis – ID RSH2A_000002).
References
[1] E. Cetinkaya, A. Klei, A. Seitz, G. Winkler. in Securing the Competitiveness of the European Chemical Industry, McKinsey & Company, New York, US (2023), https://www.mckinsey.com/∼/media/mckinsey/industries/chemicals/our%20insights/securing%20the%20competitiveness%20of%20the%20european%20chemical%20industry/securing-the-competitiveness-of-the-european-chemical-industry.pdf.Suche in Google Scholar
[2] J. Schot, L. Kanger. Res. Policy 47, 1045 (2018), https://doi.org/10.1016/j.respol.2018.03.009.Suche in Google Scholar
[3] P. G. Levi, J. M. Cullen. Environ. Sci. Technol. 52, 1725 (2018), https://doi.org/10.1021/acs.est.7b04573.Suche in Google Scholar PubMed
[4] G. Centi, S. Perathoner. Green Chem. 24, 7305 (2022), https://doi.org/10.1039/d2gc01572b.Suche in Google Scholar
[5] M. Patrascu. Chem. Eng. Proc. – Process Intensif. 184, 109291 (2023), https://doi.org/10.1016/j.cep.2023.109291.Suche in Google Scholar
[6] L. Kanger, J. Schot. Environ. Innov. Soc. Trans. 32, 7 (2019), https://doi.org/10.1016/j.eist.2018.07.006.Suche in Google Scholar
[7] G. Centi, G. Iaquaniello, S. Perathoner. BMC Chem. Eng. 1, 5 (2019), https://doi.org/10.1186/s42480-019-0006-8.Suche in Google Scholar
[8] N. Ishii, M. Stuchtey. Planet Positive Chemicals. Pathways for the Chemical Industry to Enable A Sustainable Global Economy, Center for Global Commons, Tokyo (Japan) (2022), https://cgc.ifi.u-tokyo.ac.jp/research/chemistry-industry/planet-positive-chemicals.pdf.Suche in Google Scholar
[9] G. Centi, S. Perathoner. Catal. Today 423, 113935 (2023), https://doi.org/10.1016/j.cattod.2022.1010.1017.Suche in Google Scholar
[10] IEA. in Net Zero by 2050. A Roadmap for the Global Energy Sector, International Energy Agency (IEA), Paris, France (2021), https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf.Suche in Google Scholar
[11] G. Centi, S. Perathoner. Catal. Today 342, 4 (2020), https://doi.org/10.1016/j.cattod.2019.04.003.Suche in Google Scholar
[12] M. Grahn, E. Malmgren, A. D. Korberg, M. Taljegard, J. E. Anderson, S. Brynolf, J. Hansson, I. R. Skov, T. J. Wallington. Prog. Energy 4, 032010 (2022), https://doi.org/10.1088/2516-1083/ac7937.Suche in Google Scholar
[13] H. Singh, C. Li, P. Cheng, X. Wang, Q. Liu. Energy Adv. 1, 580 (2022), https://doi.org/10.1039/d2ya00173j.Suche in Google Scholar
[14] G. Papanikolaou, G. Centi, S. Perathoner, P. LanzafameChi. J. Catal. 43, 1194 (2022), https://doi.org/10.1016/s1872-2067(21)64016-0.Suche in Google Scholar
[15] S. Perathoner, K. M. Van Geem, G. B. Marin, G. Centi. Chem. Commun. 57, 10967 (2021), https://doi.org/10.1039/d1cc03154f.Suche in Google Scholar PubMed
[16] S. G. Nnabuife, J. Ugbeh-Johnson, N. E. Okeke, C. Ogbonnaya. Carbon Capture Sci. Technol. 3, 100042 (2022), https://doi.org/10.1016/j.ccst.2022.100042.Suche in Google Scholar
[17] IEA. in Global Hydrogen Review 2022, International Energy Agency (IEA), Paris, France (2022), https://iea.blob.core.windows.net/assets/c5bc75b1-9e4d-460d-9056-6e8e626a11c4/GlobalHydrogenReview2022.pdf.Suche in Google Scholar
[18] E. B. Agyekum, C. Nutakor, A. M. Agwa, S. Kamel. Membranes 12, 173 (2022), https://doi.org/10.3390/membranes12020173.Suche in Google Scholar PubMed PubMed Central
[19] D. Tarvydas. The role of hydrogen in energy decarbonisation scenarios. Views on 2030 and 2050. In JRC Technical Report, European Union, Luxembourg, Vol. 2, (2022).Suche in Google Scholar
[20] J. A. Riera, R. M. Lima, O. M. Knio. Int. J. Hydrogen Energy 48, 13731 (2023), https://doi.org/10.1016/j.ijhydene.2022.12.242.Suche in Google Scholar
[21] R. W. Howarth, M. Z. Jacobson. Energy Sci. Eng. 9, 1676 (2021), https://doi.org/10.1002/ese3.956.Suche in Google Scholar
[22] A. I. Stankiewicz, H. Nigar. Reaction Chem. Eng. 5, 1005 (2020), https://doi.org/10.1039/d0re00116c.Suche in Google Scholar
[23] N. Tenhumberg, K. Büker. Chem. Ing. Tech. 92, 1586 (2020), https://doi.org/10.1002/cite.202000090.Suche in Google Scholar
[24] M. Wanner. Eur. Phys. J. Plus 136, 593 (2021), https://doi.org/10.1140/epjp/s13360-021-01585-8.Suche in Google Scholar
[25] C. Ampelli, D. Giusi, M. Miceli, T. Merdzhanova, V. Smirnov, U. Chime, O. Astakhov, A. J. Martín, F. L. P. Veenstra, F. A. G. Pineda, J. González-Cobos, M. García-Tecedor, S. Giménez, W. Jaegermann, G. Centi, J. Pérez-Ramírez, J. R. Galán-Mascarós, S. Perathoner. Energy Environ. Sci. 16, 1644 (2023), https://doi.org/10.1039/d2ee03215e.Suche in Google Scholar
[26] G. Centi, S. Perathoner, C. Genovese, R. Arrigo. Chem. Commun. 59, 3005 (2023), https://doi.org/10.1039/d2cc05132j.Suche in Google Scholar PubMed PubMed Central
[27] M. Ji, J. Wang. Int. J. Hydrogen Energy 46, 38612 (2021), https://doi.org/10.1016/j.ijhydene.2021.09.142.Suche in Google Scholar
[28] S. C. Wijayasekera, K. Hewage, O. Siddiqui, P. Hettiaratchi, R. Sadiq. Int. J. Hydrogen Energy 47, 5842 (2022), https://doi.org/10.1016/j.ijhydene.2021.11.226.Suche in Google Scholar
[29] L. Cao, I. K. M. Yu, X. Xiong, D. C. W. Tsang, S. Zhang, J. H. Clark, C. Hu, Y. H. Ng, J. Shang, Y. S. Ok. Environ. Res. 186, 109547 (2020), https://doi.org/10.1016/j.envres.2020.109547.Suche in Google Scholar PubMed
[30] A. Borgogna, G. Centi, G. Iaquaniello, S. Perathoner, G. Papanikolaou, A. Salladini. Sci. Total Environ. 827, 154393 (2022), https://doi.org/10.1016/j.scitotenv.2022.154393.Suche in Google Scholar PubMed
[31] H. Ishaq, I. Dincer, C. Crawford. Int. J. Hydrogen Energy 47, 26238 (2022), https://doi.org/10.1016/j.ijhydene.2021.11.149.Suche in Google Scholar
[32] H. Zhang, Z. Sun, Y. H. Hu. Renewable Sustainable Energy Rev. 149, 111330 (2021), https://doi.org/10.1016/j.rser.2021.111330.Suche in Google Scholar
[33] L. Zheng, M. Ambrosetti, D. Marangoni, A. Beretta, G. Groppi, E. Tronconi. AIChE J. 69, e17620 (2023), https://doi.org/10.1002/aic.17620.Suche in Google Scholar PubMed PubMed Central
[34] S. Renda, M. Cortese, G. Iervolino, M. Martino, E. Meloni, V. Palma. Catal. Today 383, 31 (2022), https://doi.org/10.1016/j.cattod.2020.11.020.Suche in Google Scholar
[35] M. Rieks, R. Bellinghausen, N. Kockmann, L. Mleczko. Int. J. Hydrogen Energy 40, 15940 (2015), https://doi.org/10.1016/j.ijhydene.2015.09.113.Suche in Google Scholar
[36] S. T. Wismann, J. S. Engbæk, S. B. Vendelbo, F. B. Bendixen, W. L. Eriksen, K. Aasberg-Petersen, C. Frandsen, I. Chorkendorff, P. M. Mortensen. Science 364, 756 (2019), https://doi.org/10.1126/science.aaw8775.Suche in Google Scholar PubMed
[37] Y. R. Lu, P. A. Nikrityuk. Chem. Eng. Sci. 251, 117446 (2022), https://doi.org/10.1016/j.ces.2022.117446.Suche in Google Scholar
[38] J. X. Qian, T. W. Chen, L. R. Enakonda, D. B. Liu, G. Mignani, J.-M. Basset, L. Zhou. Int. J. Hydrogen Energy 45, 7981 (2020), https://doi.org/10.1016/j.ijhydene.2020.01.052.Suche in Google Scholar
[39] C. Q. Pham, T. J. Siang, P. S. Kumar, Z. Ahmad, L. Xiao, M. B. Bahari, A. N. T. Cao, N. Rajamohan, A. S. Qazaq, A. Kumar, P. L. Show, D.-V. N. Vo. Environ. Chem. Lett. 20, 2339 (2022), https://doi.org/10.1007/s10311-022-01449-2.Suche in Google Scholar
[40] N. Sánchez-Bastardo, R. Schlögl, H. Ruland. Ind. Eng. Chem. Res. 60, 11855 (2021), https://doi.org/10.1021/acs.iecr.1c01679.Suche in Google Scholar
[41] T. I. Korányi, M. Németh, A. Beck, A. Horváth. Energies 15, 6342 (2022), https://doi.org/10.3390/en15176342.Suche in Google Scholar
© 2023 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Avogadro Colloquia in Rome on “Vision and Opportunities of a Sustainable Hydrogen Society”
- Conference papers
- H2 in the energy transition
- Watching atoms at work during reactions
- Hydrogen production and conversion to chemicals: a zero-carbon puzzle?
- Rethinking chemical production with “green” hydrogen
- Hydrogen as an energy carrier: constraints and opportunities
- Shaping the future of green hydrogen: De Nora’s electrochemical technologies for fueling the energy transition
- In-situ and operando Grazing Incidence XAS: a novel set-up and its application to model Pd electrodes for alcohols oxidation
- Hydrogen storage and handling with hydrides
- Advanced polymer electrolyte membrane water electrolysis for power to gas applications
- Inkjet printed acrylate-urethane modified poly(3,4-ethylenedioxythiophene) flexible conductive films
- Cu(II) complexes using acylhydrazones or cyclen for biocidal antifouling coatings
- Randomly cross-linked amphiphilic copolymer networks of n-butyl acrylate and N,N-dimethylacrylamide: synthesis and characterization
- Roles of electrostatics and intermolecular electronic motions in the structural and spectroscopic features of hydrogen- and halogen-bonded systems
- The accurate assessment of the chemical speciation of complex systems through multi-technique approaches
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Avogadro Colloquia in Rome on “Vision and Opportunities of a Sustainable Hydrogen Society”
- Conference papers
- H2 in the energy transition
- Watching atoms at work during reactions
- Hydrogen production and conversion to chemicals: a zero-carbon puzzle?
- Rethinking chemical production with “green” hydrogen
- Hydrogen as an energy carrier: constraints and opportunities
- Shaping the future of green hydrogen: De Nora’s electrochemical technologies for fueling the energy transition
- In-situ and operando Grazing Incidence XAS: a novel set-up and its application to model Pd electrodes for alcohols oxidation
- Hydrogen storage and handling with hydrides
- Advanced polymer electrolyte membrane water electrolysis for power to gas applications
- Inkjet printed acrylate-urethane modified poly(3,4-ethylenedioxythiophene) flexible conductive films
- Cu(II) complexes using acylhydrazones or cyclen for biocidal antifouling coatings
- Randomly cross-linked amphiphilic copolymer networks of n-butyl acrylate and N,N-dimethylacrylamide: synthesis and characterization
- Roles of electrostatics and intermolecular electronic motions in the structural and spectroscopic features of hydrogen- and halogen-bonded systems
- The accurate assessment of the chemical speciation of complex systems through multi-technique approaches