Abstract
Flexible electronics is a new generation of electronic devices in which electronic components are integrated into flexible substrates. It is used in the fabrication of displays, solar cells, integrated circuits, and increasingly in the fabrication of electronic skin (E-skin), which can mimic the properties of human skin by being able to follow skin movements and flexures without loss of mechanical and electrical properties. E-skin is suitable for integrating various sensors to monitor personal health. Conductive polymers are used in flexible electronics due to their electrical conductivity, low mass, and stability. However, their main disadvantage is their brittleness, which is why they don’t possess flexibility property without modification. Therefore, in this work, the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was used as the main chain and the side branches of poly(acrylate-urethane) (PAU) were grafted onto it by atom transfer radical polymerization (ATRP) onto it, obtaining the grafted copolymer PEDOT-g-PAU. In this way, the main chain of PEDOT retains the property of electrical conductivity without losing conjugation, while the side branches of PAU have the ability to crosslink non-covalently through hydrogen bonds with PAU side branches of adjacent polymer molecules due to the presence of oxygen in their structure. The presence of hydrogen bonds allows increasing the stretchability and flexibility of the material, and they also have the ability to spontaneously renew themselves when they break due to excessive stress. Three different synthesis conditions were used to obtain polymers of different structure, which were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and measurement of electrical conductivity with a four-point probe (4PP) method. The obtained graft copolymer was prepared in the form of ink and printed on a polyurethane (PU) substrate using inkjet technique. The conductivity of the printed layer, its elongation and adhesion were investigated, while possible delamination of the printed polymer layer was also monitored. The results showed that the PEDOT-g-PAU copolymer was successfully synthesized and inkjet printing on PU film was successful. The obtained material has satisfactory electrical and mechanical properties and could be used for the integration of fully functional biosensors with further optimization of the composition.
Funding source: Hrvatska Zaklada za Znanost
Award Identifier / Grant number: UIP-2019-04-8304
References
[1] K. Chen, J. Pan, W. Yin, C. Ma, L. Wang. Chin. Chem. Lett. 34, 108226 (2023), https://doi.org/10.1016/j.cclet.2023.108226.Search in Google Scholar
[2] D. L. Wen, D. H. Sun, P. Huang, W. Huang, M. Su, Y. Wang, M. D. Han, B. Kim, J. Brugger, H. X. Zhang, X. S. Zhang. Microsyst. Nanoeng. 7, 35 (2021), https://doi.org/10.1038/s41378-021-00261-2.Search in Google Scholar PubMed PubMed Central
[3] K. Liu, B. Ouyang, X. Guo, Y. Guo, Y. Liu. NPJ Flex. Electron. 6, 1 (2022), https://doi.org/10.1038/s41528-022-00133-3.Search in Google Scholar
[4] T. Seesaard, C. Wongchoosuk. Micromachines 14, 1638 (2023), https://doi.org/10.3390/mi14081638.Search in Google Scholar PubMed PubMed Central
[5] R. K. Baruah, H. Yoo, E. K. Lee. Micromachines 14, 1131 (2023), https://doi.org/10.3390/mi14061131.Search in Google Scholar PubMed PubMed Central
[6] D. Son, Z. Bao. ACS Nano 12, 11731 (2018), https://doi.org/10.1021/acsnano.8b07738.Search in Google Scholar PubMed
[7] L. Li, L. Han, H. Hu, R. Zhang. Mater. Adv. 4, 726 (2022), https://doi.org/10.1039/d2ma00940d.Search in Google Scholar
[8] Q. Pang, D. Lou, S. Li, G. Wang, B. Qiao, S. Dong, L. Ma, C. Gao, Z. Wum. Adv. Sci. 7, 1902673, (2020). https://doi.org/10.1002/advs.201902673 Search in Google Scholar PubMed PubMed Central
[9] P. Wang, M. Hu, H. Wang, Z. Chen, Y. Feng, J. Wang, W. Ling, Y. Huang. Adv. Sci. 7, 2001116 (2020), https://doi.org/10.1002/advs.202001116.Search in Google Scholar PubMed PubMed Central
[10] I. A. Pavel, S. Lakard, B. Lakard. Chemosensors 10, 97 (2022), https://doi.org/10.3390/chemosensors10030097.Search in Google Scholar
[11] L. A. Mercante, R. S. Andre, M. H. M. Facure, D. S. Correa, L. H. C. Mattoso. Chem. Eng. J. 465, 142847 (2023), https://doi.org/10.1016/j.cej.2023.142847.Search in Google Scholar
[12] J. Ouyang. SmartMat 2, 263 (2021), https://doi.org/10.1002/smm2.1059.Search in Google Scholar
[13] V. Van Tran, S. Lee, D. Lee, T. H. Le. Polymers 14, 3730 (2022), https://doi.org/10.3390/polym14183730.Search in Google Scholar PubMed PubMed Central
[14] M. N. Gueye, A. Carella, J. Faure-Vincent, R. Demadrille, J. P. Simonato. Prog. Mater. Sci. 108, 100616 (2020), https://doi.org/10.1016/j.pmatsci.2019.100616.Search in Google Scholar
[15] M. J. Donahue, A. Sanchez-Sanchez, S. Inal, J. Qu, R. M. Owens, D. Mecerreyes, G. G. Malliaras, D. C. Martin. Mater. Sci. Eng. R Rep. 140, 100546 (2020), https://doi.org/10.1016/j.mser.2020.100546.Search in Google Scholar
[16] D. Mantione, I. del Agua, A. Sanchez-Sanchez, D. Mecerreyes. Polymers 9, 354 (2017), https://doi.org/10.3390/polym9080354.Search in Google Scholar PubMed PubMed Central
[17] L. Miozzo, N. Battaglini, D. Braga, L. Kergoat, C. Suspène, A. Yassar. J. Polym. Sci. Part A Polym. Chem. 50, 534 (2012), https://doi.org/10.1002/pola.25062.Search in Google Scholar
[18] G. B. Tseghai, D. A. Mengistie, B. Malengier, K. A. Fante, L. Van Langenhove. Sensors 20, 1881 (2020), https://doi.org/10.3390/s20071881.Search in Google Scholar PubMed PubMed Central
[19] L. Fiket, M. Božičević, L. Brkić, P. Žagar, A. Horvat, Z. Katančić. Polymers 14, 2340 (2022), https://doi.org/10.3390/polym14122340.Search in Google Scholar PubMed PubMed Central
[20] Y. Wang, Y. Z. Zhang, D. Dubbink, J. E. ten Elshof. Nano Energy 49, 481 (2018), https://doi.org/10.1016/j.nanoen.2018.05.002.Search in Google Scholar
[21] L. Nayak, S. Mohanty, S. K. Nayak, A. Ramadoss. J. Mater. Chem. C 7, 8771 (2019), https://doi.org/10.1039/c9tc01630a.Search in Google Scholar
[22] J. Wiklund, A. Karaoç, T. Palko, H. Yigitler, K. Ruttik, R. Jäntti, JJ. Paltakari. J. Manuf. Mater. Process. 5, 89 (2021), https://doi.org/10.3390/jmmp5030089.Search in Google Scholar
[23] Z. P. Yin, Y. A. Huang, N. Bin Bu, X. M. Wang, Y. L. Xiong. Chin. Sci. Bull. 55, 3383 (2010), https://doi.org/10.1007/s11434-010-3251-y.Search in Google Scholar
[24] K. Yan, J. Li, L. Pan, Y. Shi. APL Mater. 8, 120705 (2020), https://doi.org/10.1063/5.0031669.Search in Google Scholar
[25] K. S. Kwon, M. K. Rahman, T. H. Phung, S. D. Hoath, S. Jeong, J. S. Kim. Flex. Print. Electron. 5, 043003 (2020), https://doi.org/10.1088/2058-8585/abc8ca.Search in Google Scholar
[26] A. Bastola, Y. He, J. Im, G. Rivers, F. Wang, R. Worsley, J. S. Austin, O. Nelson-Dummett, R. D. Wildman, R. Hague, C. J. Tuck, L. Turyanska. Mater. Today Electron. 6, 100058 (2023), https://doi.org/10.1016/j.mtelec.2023.100058.Search in Google Scholar
[27] Z. Zhou, H. Zhang, J. Liu, W. Huang. Giant 6, 100051 (2021), https://doi.org/10.1016/j.giant.2021.100051.Search in Google Scholar
[28] M. Gao, L. Li, Y. Song. J. Mater. Chem. C 5, 2971 (2017), https://doi.org/10.1039/c7tc00038c.Search in Google Scholar
[29] M. Raić, D. Sačer, M. Kraljić Roković. Chem. Biochem. Eng. Q. 33, 385 (2019), https://doi.org/10.15255/CABEQ.2019.1609.Search in Google Scholar
[30] P. Baek, N. Aydemir, Y. An, E. W. C. Chan, A. Sokolova, A. Nelson, J. P. Mata, D. McGillivray, D. Barker, J. Travas-Sejdic. Chem. Mater. 29, 8850 (2017), https://doi.org/10.1021/acs.chemmater.7b03291.Search in Google Scholar
[31] E. Tomšík, I. Ivanko, J. Svoboda, I. Šeděnková, A. Zhigunov, J. Hromádková, J. Pánek, M. Lukešová, N. Velychkivska, L. Janisová. Macromol. Chem. Phys. 221, 200219 (2020), https://doi.org/10.1002/macp.202000219.Search in Google Scholar
[32] Q. Zhao, R. Jamal, L. Zhang, M. Wang, T. Abdiryim. Nanoscale Res. Lett. 9, 557 (2014), https://doi.org/10.1186/1556-276X-9-557.Search in Google Scholar PubMed PubMed Central
[33] J. Seon, E. S. Jang, J. H. Song, S. Choi, S. B. Khan, H. Han, J. App. Polym. Sci. 118, 2454 (2010), https://doi.org/10.1002/app.32344 Search in Google Scholar
[34] M. Staszczak, M. Nabavian Kalat, K. M. Golasiński, L. Urbański, K. Takeda, R. Matsui, E. A. Pieczyska. Polymers 14, 4775 (2022), https://doi.org/10.3390/polym14214775.Search in Google Scholar PubMed PubMed Central
[35] Z. Katančić, I. Gavran, J. Smolković, Z. Hrnjak-Murgić. J. Appl. Pol. Sci. 135, 46316 (2018), https://doi.org/10.1002/app.46316.Search in Google Scholar
[36] H. Zhang, H. Pang, L. Zhang, X. Chen, B. Liao. J. Polym. Environ. 21, 329 (2013), https://doi.org/10.1007/s10924-012-0542-2.Search in Google Scholar
[37] G. P Bates, V. S. Miller. J. Occup. Med. Toxicol. 3, 4 (2008); https://doi.org/10.1186/1745-6673-3-4 Search in Google Scholar PubMed PubMed Central
[38] T. Kelly, B. Ghadi, S. Berg, H. Ardebili. Sci. Rep. 6, 20128 (2016), https://doi.org/10.1038/srep20128.Search in Google Scholar PubMed PubMed Central
[39] Y. Ding, W. Xu, W. Wang, H. Fong, Z. Zhu. ACS Appl. Mater. Interfaces 9, 30014 (2017), https://doi.org/10.1021/acsami.7b06726.Search in Google Scholar PubMed
[40] P. J. Taroni, G. Santagiuliana, K. Wan, P. Calado, M. Qiu, H. Zhang, N. M. Pugno, M. Palma, N. Stingelin-Stutzman, M. Heeney. Adv. Funct. Mater. 28, 1704285 (2018), https://doi.org/10.1002/adfm.201704285.Search in Google Scholar
© 2024 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Avogadro Colloquia in Rome on “Vision and Opportunities of a Sustainable Hydrogen Society”
- Conference papers
- H2 in the energy transition
- Watching atoms at work during reactions
- Hydrogen production and conversion to chemicals: a zero-carbon puzzle?
- Rethinking chemical production with “green” hydrogen
- Hydrogen as an energy carrier: constraints and opportunities
- Shaping the future of green hydrogen: De Nora’s electrochemical technologies for fueling the energy transition
- In-situ and operando Grazing Incidence XAS: a novel set-up and its application to model Pd electrodes for alcohols oxidation
- Hydrogen storage and handling with hydrides
- Advanced polymer electrolyte membrane water electrolysis for power to gas applications
- Inkjet printed acrylate-urethane modified poly(3,4-ethylenedioxythiophene) flexible conductive films
- Cu(II) complexes using acylhydrazones or cyclen for biocidal antifouling coatings
- Randomly cross-linked amphiphilic copolymer networks of n-butyl acrylate and N,N-dimethylacrylamide: synthesis and characterization
- Roles of electrostatics and intermolecular electronic motions in the structural and spectroscopic features of hydrogen- and halogen-bonded systems
- The accurate assessment of the chemical speciation of complex systems through multi-technique approaches
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Avogadro Colloquia in Rome on “Vision and Opportunities of a Sustainable Hydrogen Society”
- Conference papers
- H2 in the energy transition
- Watching atoms at work during reactions
- Hydrogen production and conversion to chemicals: a zero-carbon puzzle?
- Rethinking chemical production with “green” hydrogen
- Hydrogen as an energy carrier: constraints and opportunities
- Shaping the future of green hydrogen: De Nora’s electrochemical technologies for fueling the energy transition
- In-situ and operando Grazing Incidence XAS: a novel set-up and its application to model Pd electrodes for alcohols oxidation
- Hydrogen storage and handling with hydrides
- Advanced polymer electrolyte membrane water electrolysis for power to gas applications
- Inkjet printed acrylate-urethane modified poly(3,4-ethylenedioxythiophene) flexible conductive films
- Cu(II) complexes using acylhydrazones or cyclen for biocidal antifouling coatings
- Randomly cross-linked amphiphilic copolymer networks of n-butyl acrylate and N,N-dimethylacrylamide: synthesis and characterization
- Roles of electrostatics and intermolecular electronic motions in the structural and spectroscopic features of hydrogen- and halogen-bonded systems
- The accurate assessment of the chemical speciation of complex systems through multi-technique approaches