Startseite The accurate assessment of the chemical speciation of complex systems through multi-technique approaches
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The accurate assessment of the chemical speciation of complex systems through multi-technique approaches

  • Anna Baryłka , Beata Godlewska-Żyłkiewicz , Demetrio Milea EMAIL logo und Sofia Gama EMAIL logo
Veröffentlicht/Copyright: 23. April 2024

Abstract

Chemical speciation studies, i.e., the study of the distribution of an element or compound among its various species in a system of interest, are of fundamental importance. Chemical speciation investigations can be performed mainly by either the direct measurement of the chemical species by different analytical techniques, or by chemical modeling through equilibrium thermodynamic data, based on the use of stability constants (and other thermodynamic parameters) of the formed species. For these purposes, a series of techniques can be used. As soon as the complexity of the systems of interest increases, the need for more detailed information arises. As such, a multi-technique approach is essential to derive complementary data to define a chemical system. In this tutorial review we analyzed the most common instrumental techniques employed for chemical speciation studies and equilibrium data analysis. The main advantages and disadvantages of potentiometry, voltammetry, coulometry, UV–vis spectrophotometry, spectrofluorimetry, NMR, EPR, ITC, HRMS and quantum mechanical calculations, together with brief mention to other less common techniques, are discussed together with a series of practical examples of their application. The main aim of this tutorial review is to provide a practical guide to all scientists interested in the field.


Corresponding authors: Demetrio Milea, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, CHIBIOFARAM, Università degli Studi di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy, e-mail: ; and Sofia Gama, C2TN – Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066, Bobadela LRS, Portugal, e-mail:
Article note: A collection of invited papers based on presentations at the 38th International Conference on Solution Chemistry.

Acknowledgments

The authors would like to thank the financial support from the National Science Centre (NCN), Poland, under the scope of the research project number 2020/39/B/ST4/03060 and COST (European Cooperation in Science and Technology), as this publication is based upon work from COST Action CA18202 – NECTAR, Network for Equilibria and Chemical Thermodynamics Advanced Research.

References

[1] D. M. Templeton, F. Ariese, R. Cornelis, L. -G. Danielsson, H. Muntau, H. P. Van Leeuwen, R. Lobinski. Pure Appl. Chem. 72, 1453 (2000), https://doi.org/10.1351/pac200072081453.Suche in Google Scholar

[2] A. M. Ure. Mikrochim. Acta 104, 49 (1991), https://doi.org/10.1007/BF01245495.Suche in Google Scholar

[3] I. S. Krull. Trace Metal Analysis and Speciation, Elsevier, Amsterdam, Oxford, New York, [etc.] (1991).Suche in Google Scholar

[4] R. Cornelis (Ed.). Handbook of Elemental Speciation: Techniques and Methodology, Wiley, Chichester, West Sussex, England; Hoboken, NJ (2003).10.1002/0470868384Suche in Google Scholar

[5] I. Ali, H. Y. Aboul-Enein. Instrumental Methods in Metal Ion Speciation, CRC/Taylor & Francis, Baco Raton, FL (2006).10.1201/9781420019407Suche in Google Scholar

[6] T. Kiss, É. A. Enyedy, T. Jakusch. Coord. Chem. Rev. 352, 401 (2017), https://doi.org/10.1016/j.ccr.2016.12.016.Suche in Google Scholar

[7] A. J. Bard, L. R. Faulkner, H. S. White. Electrochemical Methods: Fundamentals and Applications, Wiley, Hoboken, NJ, 3rd ed. (2022).Suche in Google Scholar

[8] M. Bastos, O. Abian, C. M. Johnson, F. Ferreira-da-Silva, S. Vega, A. Jimenez-Alesanco, D. Ortega-Alarcon, A. Velazquez-Campoy. Nat. Rev. Methods Primer 3, 17 (2023), https://doi.org/10.1038/s43586-023-00199-x.Suche in Google Scholar

[9] C. Bonaccorso, A. Ciadamidaro, C. Sgarlata, D. Sciotto, G. Arena. Chem. Commun. 46, 7139 (2010), https://doi.org/10.1039/c0cc02394a.Suche in Google Scholar PubMed

[10] R. Migliore, G. Granata, A. Rivoli, G. M. L. Consoli, C. Sgarlata. Front. Chem. 8, 626467 (2021), https://doi.org/10.3389/fchem.2020.626467.Suche in Google Scholar PubMed PubMed Central

[11] C. Sgarlata, B. L. Schneider, V. Zito, R. Migliore, M. Tegoni, V. L. Pecoraro, G. Arena. Chem. – Eur. J. 27, 17669 (2021), https://doi.org/10.1002/chem.202103263.Suche in Google Scholar PubMed

[12] A. Braibanti, G. Ostacoli, P. Paoletti, L. D. Pettit, S. Sammartano. Pure Appl. Chem. 59, 1721 (1987), https://doi.org/10.1351/pac198759121721.Suche in Google Scholar

[13] R. M. Cigala, F. Crea, C. De Stefano, G. Lando, D. Milea, S. Sammartano. Geochim. Cosmochim. Acta 87, 1 (2012), https://doi.org/10.1016/j.gca.2012.03.029.Suche in Google Scholar

[14] L. Castellino, E. Alladio, S. Bertinetti, G. Lando, C. De Stefano, S. Blasco, E. García-España, S. Gama, S. Berto, D. Milea. Chemom. Intell. Lab. Syst. 239, 104860 (2023), https://doi.org/10.1016/j.chemolab.2023.104860.Suche in Google Scholar

[15] W. R. Harris, R. J. Motekaitis, A. E. Martell. Inorg. Chem. 14, 974 (1975), https://doi.org/10.1021/ic50147a003.Suche in Google Scholar

[16] A. E. Martell, R. J. Motekaitis. Determination and Use of Stability Constants, Wiley VCH, New York, 2nd ed. (1992).Suche in Google Scholar

[17] R. Delgado. Talanta 45, 451 (1997), https://doi.org/10.1016/S0039-9140(97)00157-4.Suche in Google Scholar

[18] C. Bretti, R. M. Cigala, G. Lando, D. Milea, S. Sammartano. J. Agric. Food Chem. 60, 8075 (2012), https://doi.org/10.1021/jf302007v.Suche in Google Scholar PubMed

[19] S. Gama, M. Frontauria, N. Ueberschaar, G. Brancato, D. Milea, S. Sammartano, W. Plass. New J. Chem. 42, 8062 (2018), https://doi.org/10.1039/C7NJ04889K.Suche in Google Scholar

[20] L. A. Byrne, M. J. Hynes, C. D. Connolly, R. A. Murphy. J. Inorg. Biochem. 105, 1656 (2011), https://doi.org/10.1016/j.jinorgbio.2011.07.016.Suche in Google Scholar PubMed

[21] C. De Stefano, G. Lando, D. Milea, A. Pettignano, S. Sammartano. J. Solut. Chem. 39, 179 (2010), https://doi.org/10.1007/s10953-009-9493-1.Suche in Google Scholar

[22] F. Crea, C. De Stefano, D. Milea, S. Sammartano. Coord. Chem. Rev. 252, 1108 (2008), https://doi.org/10.1016/j.ccr.2007.09.008.Suche in Google Scholar

[23] D. R. Crow. Polarography of Metal Complexes, Acad. Press, London [u.a.] (1969).Suche in Google Scholar

[24] I. Cukrowski. Anal. Chim. Acta 336, 23 (1996), https://doi.org/10.1016/S0003-2670(96)00335-2.Suche in Google Scholar

[25] V. Cuculić, I. Pižeta, M. Branica. J. Electroanal. Chem. 583, 140 (2005), https://doi.org/10.1016/j.jelechem.2005.05.011.Suche in Google Scholar

[26] K. Arena, G. Brancato, F. Cacciola, F. Crea, S. Cataldo, C. De Stefano, S. Gama, G. Lando, D. Milea, L. Mondello, A. Pettignano, W. Plass, S. Sammartano. Biomolecules 10, 930 (2020), https://doi.org/10.3390/biom10060930.Suche in Google Scholar PubMed PubMed Central

[27] M. Pettine, F. J. Millero, G. Macchi. Anal. Chem. 53, 1039 (1981), https://doi.org/10.1021/ac00230a027.Suche in Google Scholar

[28] J. J. Lingane. Chem. Rev. 29, 1 (1941), https://doi.org/10.1021/cr60092a001.Suche in Google Scholar

[29] D. D. DeFord, D. N. Hume. J. Am. Chem. Soc. 73, 5321 (1951), https://doi.org/10.1021/ja01155a093.Suche in Google Scholar

[30] C. Billing, I. Cukrowski. J. Phys. Chem. B 120, 12972 (2016), https://doi.org/10.1021/acs.jpcb.6b10522.Suche in Google Scholar PubMed

[31] I. Cukrowski, J. M. Zhang. Electroanalysis 16, 612 (2004), https://doi.org/10.1002/elan.200302869.Suche in Google Scholar

[32] I. Cukrowski, N. Maseko. Electroanalysis 15, 1377 (2003), https://doi.org/10.1002/elan.200302728.Suche in Google Scholar

[33] I. Cukrowski, D. M. Mogano, J. R. Zeevaart. J. Inorg. Biochem. 99, 2308 (2005), https://doi.org/10.1016/j.jinorgbio.2005.08.012.Suche in Google Scholar PubMed

[34] J. Galceran, E. Companys, J. Puy, J. Cecilia, J. L. Garces. J. Electroanal. Chem. 566, 95 (2004), https://doi.org/10.1016/j.jelechem.2003.11.017.Suche in Google Scholar

[35] L. López-Solis, J. Galceran, J. Puy, E. Companys. Chemosensors 10, 351 (2022), https://doi.org/10.3390/chemosensors10090351.Suche in Google Scholar

[36] E. Companys, J. Galceran, J. P. Pinheiro, J. Puy, P. Salaün. Curr. Opin. Electrochem. 3, 144 (2017), https://doi.org/10.1016/j.coelec.2017.09.007.Suche in Google Scholar

[37] J. Galceran, E. Companys, J. Puy, J. P. Pinheiro, E. Rotureau. J. Electroanal. Chem. 901, 115750 (2021), https://doi.org/10.1016/j.jelechem.2021.115750.Suche in Google Scholar

[38] P. Pla-Vilanova, J. Galceran, J. Puy, E. Companys, M. Filella. J. Electroanal. Chem. 849, 113334 (2019), https://doi.org/10.1016/j.jelechem.2019.113334.Suche in Google Scholar

[39] E. H. Swift. Anal. Chem. 28, 1804 (1956), https://doi.org/10.1021/ac60120a002.Suche in Google Scholar

[40] G. Ziyatdinova, H. Budnikov. Chemosensors 9, 91 (2021), https://doi.org/10.3390/chemosensors9050091.Suche in Google Scholar

[41] K. Stancheva, C. Pasha. Oxid. Commun. 46, 261 (2023).Suche in Google Scholar

[42] E. Furia, M. Nardi, G. Sindona. J. Chem. Eng. Data 55, 2824 (2010), https://doi.org/10.1021/je901005x.Suche in Google Scholar

[43] E. Furia, R. Porto. Ann. Chim. 94, 795 (2004), https://doi.org/10.1002/adic.200490100.Suche in Google Scholar PubMed

[44] G. Palladino, D. Ferri, C. Manfredi, E. Vasca. Anal. Chim. Acta 582, 164 (2007), https://doi.org/10.1016/j.aca.2006.08.060.Suche in Google Scholar PubMed

[45] E. Furia, D. Aiello, L. Di Donna, F. Mazzotti, A. Tagarelli, H. Thangavel, A. Napoli, G. Sindona. Dalton Trans. 43, 1055 (2014), https://doi.org/10.1039/C3DT52255E.Suche in Google Scholar

[46] Ż. Arciszewska, S. Gama, M. Kalinowska, G. Świderski, R. Świsłocka, E. Gołębiewska, M. Naumowicz, M. Worobiczuk, A. Cudowski, A. Pietryczuk, C. De Stefano, D. Milea, W. Lewandowski, B. Godlewska-Żyłkiewicz. Int. J. Mol. Sci. 23, 888 (2022), https://doi.org/10.3390/ijms23020888.Suche in Google Scholar PubMed PubMed Central

[47] M. A. Santos, S. Gama, J. C. Pessoa, M. C. Oliveira, I. Tóth, E. Farkas. Eur. J. Inorg. Chem. 2007, 1728 (2007), https://doi.org/10.1002/ejic.200601088.Suche in Google Scholar

[48] J. Nagaj, K. Stokowa-Sołtys, E. Kurowska, T. Frączyk, M. Jeżowska-Bojczuk, W. Bal. Inorg. Chem. 52, 13927 (2013), https://doi.org/10.1021/ic401451s.Suche in Google Scholar PubMed

[49] S. Gama, R. Hermenau, M. Frontauria, D. Milea, S. Sammartano, C. Hertweck, W. Plass. Chem. – Eur. J. 27, 2724 (2021), https://doi.org/10.1002/chem.202003842.Suche in Google Scholar PubMed PubMed Central

[50] F. Crea, C. De Stefano, A. Irto, G. Lando, S. Materazzi, D. Milea, A. Pettignano, S. Sammartano. Molecules 25, 511 (2020), https://doi.org/10.3390/molecules25030511.Suche in Google Scholar PubMed PubMed Central

[51] C. Bretti, F. Crea, C. De Stefano, S. Sammartano, G. Vianelli. Fluid Phase Equilib. 314, 185 (2012), https://doi.org/10.1016/j.fluid.2011.10.007.Suche in Google Scholar

[52] E. Cini, G. Crisponi, A. Fantasia, R. Cappai, S. Siciliano, G. D. Florio, V. M. Nurchi, M. Corsini. Biomolecules 14, 92 (2024), https://doi.org/10.3390/biom14010092.Suche in Google Scholar PubMed PubMed Central

[53] R. Cappai, K. Chand, J. I. Lachowicz, S. Chaves, L. Gano, G. Crisponi, V. M. Nurchi, M. Peana, M. A. Zoroddu, M. A. Santos. New J. Chem. 42, 8050 (2018), https://doi.org/10.1039/C8NJ00116B.Suche in Google Scholar

[54] F. Crea, C. De Stefano, A. Irto, D. Milea, A. Pettignano, S. Sammartano. J. Mol. Liq. 229, 15 (2017), https://doi.org/10.1016/j.molliq.2016.12.041.Suche in Google Scholar

[55] N. Ribeiro, I. Bulut, B. Sergi, V. Pósa, G. Spengler, G. Sciortino, V. André, L. P. Ferreira, T. Biver, V. Ugone, E. Garribba, J. Costa-Pessoa, É. A. Enyedy, C. Acilan, I. Correia. Front. Chem. 11, 1106349 (2023), https://doi.org/10.3389/fchem.2023.1106349.Suche in Google Scholar PubMed PubMed Central

[56] C. Pelosi, F. Saitta, C. Zerino, G. Canil, T. Biver, A. Pratesi, C. Duce, D. Fessas, C. Gabbiani, M. R. Tiné. Molecules 26, 2376 (2021), https://doi.org/10.3390/molecules26082376.Suche in Google Scholar PubMed PubMed Central

[57] C. De Rosa, A. Melchior, M. Sanadar, M. Tolazzi, A. Giorgetti, R. P. Ribeiro, C. Nardon, F. Piccinelli. Inorg. Chem. 59, 12564 (2020), https://doi.org/10.1021/acs.inorgchem.0c01663.Suche in Google Scholar PubMed PubMed Central

[58] F. Mancuso, D. Crisafulli, M. Milone, A. Irto, R. M. Cigala, G. Lando, I. Pisagatti, A. Notti, G. Gattuso. J. Mol. Liq. 368, 120670 (2022), https://doi.org/10.1016/j.molliq.2022.120670.Suche in Google Scholar

[59] S. Abada, A. Lecointre, M. Elhabiri, L. J. Charbonnière. Dalton Trans. 39, 9055 (2010), https://doi.org/10.1039/c0dt00453g.Suche in Google Scholar PubMed

[60] V. M. Nurchi, G. Crisponi, G. Sanna, I. Pérez-Toro, J. Niclos-Gutierrez, M. J. Gonzalez-Perez, A. Domínguez Martín. J. Inorg. Biochem. 194, 26 (2019), https://doi.org/10.1016/j.jinorgbio.2019.02.006.Suche in Google Scholar PubMed

[61] J. R. Lakowicz (Ed.). Principles of Fluorescence Spectroscopy, Springer US, Boston, MA (2006).10.1007/978-0-387-46312-4Suche in Google Scholar

[62] F. Macii, T. Biver. J. Inorg. Biochem. 216, 111305 (2021), https://doi.org/10.1016/j.jinorgbio.2020.111305.Suche in Google Scholar PubMed

[63] R. Bondi, T. Biver, L. Dalla Via, F. Guarra, M. Hyeraci, C. Sissi, L. Labella, F. Marchetti, S. Samaritani. J. Inorg. Biochem. 202, 110874 (2020), https://doi.org/10.1016/j.jinorgbio.2019.110874.Suche in Google Scholar PubMed

[64] É. A. Enyedy, O. Dömötör, E. Varga, T. Kiss, R. Trondl, C. G. Hartinger, B. K. Keppler. J. Inorg. Biochem. 117, 189 (2012), https://doi.org/10.1016/j.jinorgbio.2012.08.005.Suche in Google Scholar PubMed

[65] É. A. Enyedy, É. Zsigó, N. V. Nagy, C. R. Kowol, A. Roller, B. K. Keppler, T. Kiss. Eur. J. Inorg. Chem. 2012, 4036 (2012), https://doi.org/10.1002/ejic.201200360.Suche in Google Scholar

[66] T. Biver, C. Cavazza, F. Secco, M. Venturini. J. Inorg. Biochem. 101, 461 (2007), https://doi.org/10.1016/j.jinorgbio.2006.11.009.Suche in Google Scholar PubMed

[67] É. A. Enyedy, G. M. Bognár, N. V. Nagy, T. Jakusch, T. Kiss, D. Gambino. Polyhedron 67, 242 (2014), https://doi.org/10.1016/j.poly.2013.08.053.Suche in Google Scholar

[68] K. Popov, H. Rönkkömäki, L. H. J. Lajunen. Pure Appl. Chem. 78, 663 (2006), https://doi.org/10.1351/pac200678030663.Suche in Google Scholar

[69] G. Crisponi, V. M. Nurchi, T. Pivetta, J. Gałęzowska, E. Gumienna-Kontecka, T. Bailly, R. Burgada, H. Kozłowski. J. Inorg. Biochem. 102, 1486 (2008), https://doi.org/10.1016/j.jinorgbio.2008.01.010.Suche in Google Scholar PubMed

[70] F. H. Köhler. Paramagnetic complexes in solution: the NMR approach. in Encycl. Magn. Reson., R. K. Harris (Ed.), p. emrstm1229, John Wiley & Sons, Ltd, Chichester, UK (2011).Suche in Google Scholar

[71] P. Cardiano, R. M. Cigala, M. Cordaro, C. De Stefano, D. Milea, S. Sammartano. New J. Chem. 41, 4065 (2017), https://doi.org/10.1039/C7NJ00118E.Suche in Google Scholar

[72] V. M. Nurchi, M. De Guadalupe Jaraquemada-Pelaez, G. Crisponi, J. I. Lachowicz, R. Cappai, L. Gano, M. A. Santos, A. Melchior, M. Tolazzi, M. Peana, S. Medici, M. A. Zoroddu. J. Inorg. Biochem. 193, 152 (2019), https://doi.org/10.1016/j.jinorgbio.2019.01.012.Suche in Google Scholar PubMed

[73] A. Baryłka, A. Bagińska-Krakówka, L. Zuccarello, F. Mancuso, G. Gattuso, G. Lando, C. Sgarlata, C. De Stefano, B. Godlewska-Żyłkiewicz, D. Milea, S. Gama. Thermochim. Acta 730, 179615 (2023), https://doi.org/10.1016/j.tca.2023.179615.Suche in Google Scholar

[74] S. Blasco, M. Inclán, B. Verdejo, E. García-España. Chemom. Intell. Lab. Syst. 231, 104672 (2022), https://doi.org/10.1016/j.chemolab.2022.104672.Suche in Google Scholar

[75] S. Gama, P. Dron, S. Chaves, E. Farkas, M. A. Santos. Dalton Trans. (31), 6141 (2009), https://doi.org/10.1039/b904950a.Suche in Google Scholar PubMed

[76] S. Gama, M. Gil, L. Gano, E. Farkas, M. Amélia Santos. J. Inorg. Biochem. 103, 288 (2009), https://doi.org/10.1016/j.jinorgbio.2008.10.020.Suche in Google Scholar PubMed

[77] V. M. Nurchi, R. Cappai, K. Chand, S. Chaves, L. Gano, G. Crisponi, M. Peana, M. A. Zoroddu, M. A. Santos. Dalton Trans. 48, 16167 (2019), https://doi.org/10.1039/C9DT02905B.Suche in Google Scholar PubMed

[78] F. Cuenot, M. Meyer, E. Espinosa, A. Bucaille, R. Burgat, R. Guilard, C. Marichal-Westrich. Eur. J. Inorg. Chem. 2008, 267 (2008), https://doi.org/10.1002/ejic.200700819.Suche in Google Scholar

[79] M. Amélia Santos, S. Gama, L. Gano, G. Cantinho, E. Farkas. Dalton Trans. (21), 3772 (2004), https://doi.org/10.1039/B409357G.Suche in Google Scholar PubMed

[80] S. Gama, I. Rodrigues, F. Mendes, I. C. Santos, E. Gabano, B. Klejevskaja, J. Gonzalez-Garcia, M. Ravera, R. Vilar, A. Paulo. J. Inorg. Biochem. 160, 275 (2016), https://doi.org/10.1016/j.jinorgbio.2016.04.002.Suche in Google Scholar PubMed

[81] G. Canil, S. Braccini, T. Marzo, L. Marchetti, A. Pratesi, T. Biver, T. Funaioli, F. Chiellini, J. D. Hoeschele, C. Gabbiani. Dalton Trans. 48, 10933 (2019), https://doi.org/10.1039/C9DT01645G.Suche in Google Scholar

[82] M. Somlyay, G. Orgovan, B. Noszal. Curr. Pharm. Anal. 11, 4 (2014), https://doi.org/10.2174/1573412910666140917213713.Suche in Google Scholar

[83] M. Maseda, T. Takamuku. J. Mol. Liq. 384, 122252 (2023), https://doi.org/10.1016/j.molliq.2023.122252.Suche in Google Scholar

[84] A. Marlin, A. Koller, E. Madarasi, M. Cordier, D. Esteban-Gómez, C. Platas-Iglesias, G. Tircsó, E. Boros, V. Patinec, R. Tripier. Inorg. Chem. 62, 20634 (2023), https://doi.org/10.1021/acs.inorgchem.3c01417.Suche in Google Scholar PubMed

[85] T. Jakusch. J. Inorg. Biochem. 95, 1 (2003), https://doi.org/10.1016/S0162-0134(03)00090-4.Suche in Google Scholar PubMed

[86] I. Correia, J. C. Pessoa, M. T. Duarte, M. F. M. Da Piedade, T. Jackush, T. Kiss, M. M. C. A. Castro, C. F. G. C. Geraldes, F. Avecilla. Eur. J. Inorg. Chem. 2005, 732 (2005), https://doi.org/10.1002/ejic.200400481.Suche in Google Scholar

[87] T. Georges, R. Chèvre, S. F. Cousin, C. Gervais, P. Thureau, G. Mollica, T. Azaïs. ACS Omega 9, 4881 (2024), https://doi.org/10.1021/acsomega.3c08292.Suche in Google Scholar PubMed PubMed Central

[88] M. M. Roessler, E. Salvadori. Chem. Soc. Rev. 47, 2534 (2018), https://doi.org/10.1039/C6CS00565A.Suche in Google Scholar PubMed

[89] D. Goldfarb, S. Stoll (Eds.). EPR Spectroscopy: Fundamentals and Methods, Wiley/Blackwell, Hoboken, N.J (2018).Suche in Google Scholar

[90] Á. Dancs, K. Selmeczi, N. V. May, T. Gajda. New J. Chem. 42, 7746 (2018), https://doi.org/10.1039/C7NJ04716A.Suche in Google Scholar

[91] G. Valora, C. Bonaccorso, A. Cesaretti, C. G. Fortuna, A. Spalletti, F. Elisei. Dyes Pigments 187, 109150 (2021), https://doi.org/10.1016/j.dyepig.2021.109150.Suche in Google Scholar

[92] R. Cappai, A. Fantasia, G. Crisponi, E. Garribba, M. A. Santos, V. M. Nurchi. Molecules 27, 1555 (2022), https://doi.org/10.3390/molecules27051555.Suche in Google Scholar PubMed PubMed Central

[93] A. Jancsó, K. Selmeczi, P. Gizzi, N. V. Nagy, T. Gajda, B. Henry. J. Inorg. Biochem. 105, 92 (2011), https://doi.org/10.1016/j.jinorgbio.2010.09.004.Suche in Google Scholar PubMed

[94] S. Gama, F. Mendes, F. Marques, I. C. Santos, M. F. Carvalho, I. Correia, J. C. Pessoa, I. Santos, A. Paulo. J. Inorg. Biochem. 105, 637 (2011), https://doi.org/10.1016/j.jinorgbio.2011.01.013.Suche in Google Scholar PubMed

[95] S. M. G. Leite, L. M. P. Lima, S. Gama, F. Mendes, M. Orio, I. Bento, A. Paulo, R. Delgado, O. Iranzo. Inorg. Chem. 55, 11801 (2016), https://doi.org/10.1021/acs.inorgchem.6b01884.Suche in Google Scholar PubMed

[96] Á. Dancs, N. V. May, K. Selmeczi, Z. Darula, A. Szorcsik, F. Matyuska, T. Páli, T. Gajda. New J. Chem. 41, 808 (2017), https://doi.org/10.1039/C6NJ03126A.Suche in Google Scholar

[97] A. Sornosa-Ten, P. Jewula, T. Fodor, S. Brandès, V. Sladkov, Y. Rousselin, C. Stern, J. -C. Chambron, M. Meyer. New J. Chem. 42, 7765 (2018), https://doi.org/10.1039/C8NJ00166A.Suche in Google Scholar

[98] D. Mendes De Oliveira, S. R. Zukowski, V. Palivec, J. Hénin, H. Martinez-Seara, D. Ben-Amotz, P. Jungwirth, E. Duboué-Dijon. Phys. Chem. Chem. Phys. 22, 24014 (2020), https://doi.org/10.1039/D0CP02987D.Suche in Google Scholar PubMed

[99] A. J. Clifford, H. E. Lackey, G. L. Nelson, S. A. Bryan, A. M. Lines. Anal. Chem. 93, 5890 (2021), https://doi.org/10.1021/acs.analchem.1c00244.Suche in Google Scholar PubMed

[100] L. J. Bonales, N. Rodríguez-Villagra, I. Sánchez-García, O. R. Montoro. Prog. Nucl. Energy 145, 104122 (2022), https://doi.org/10.1016/j.pnucene.2022.104122.Suche in Google Scholar

[101] S. R. Martin, M. J. Schilstra, G. Siligardi. Circular dichroism, in Biophys. Approaches Determining Ligand Bind. Biomol. Targets Detect. Meas. Model., A. Podjarny, A. P. Dejaegere, B. Kieffer (Eds.), The Royal Society of Chemistry, London (2011).Suche in Google Scholar

[102] R. D. Peacock, B. Stewart. Coord. Chem. Rev. 46, 129 (1982), https://doi.org/10.1016/0010-8545(82)85002-9.Suche in Google Scholar

[103] S. R. Martin, M. J. Schilstra. Methods Cell Biol. 84, 263 (2008), https://doi.org/10.1016/S0091-679X(07)84010-6.Suche in Google Scholar PubMed

[104] N. J. Greenfield. Nat. Protoc. 1, 2733 (2006), https://doi.org/10.1038/nprot.2006.229.Suche in Google Scholar PubMed PubMed Central

[105] A. Rodger, D. Marshall. Biochemist 43, 58 (2021), https://doi.org/10.1042/bio_2020_105.Suche in Google Scholar

[106] P. Nunes, I. Correia, F. Marques, A. P. Matos, M. M. C. Dos Santos, C. G. Azevedo, J. -L. Capelo, H. M. Santos, S. Gama, T. Pinheiro, I. Cavaco, J. C. Pessoa. Inorg. Chem. 59, 9116 (2020), https://doi.org/10.1021/acs.inorgchem.0c00925.Suche in Google Scholar PubMed

[107] P. Gans, A. Sabatini, A. Vacca. Talanta 43, 1739 (1996), https://doi.org/10.1016/0039-9140(96)01958-3.Suche in Google Scholar PubMed

[108] D. P. E. Dickson, F. J. Berry (Eds.). Mössbauer Spectroscopy, Cambridge University Press, Cambridge; New York (1986).10.1017/CBO9780511524233Suche in Google Scholar

[109] Y. Garcia, J. Wang, T. Zhang (Eds.). Mössbauer Spectroscopy: Applications in Chemistry and Materials Science, Wiley VCH, Weinheim (2024).10.1002/9783527824953Suche in Google Scholar

[110] P. Gütlich, E. Bill, A. Trautwein. Mössbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, Springer, Berlin Heidelberg, Updated ed. (2011).10.1007/978-3-540-88428-6Suche in Google Scholar

[111] G. J. Long, F. Grandjean (Eds.). Mössbauer Spectroscopy Applied to Inorganic Chemistry, Springer US, Boston, MA (1989).10.1007/978-1-4899-2289-2Suche in Google Scholar

[112] R. V. Parish. NMR, NQR, EPR, and Mössbauer Spectroscopy in Inorganic Chemistry, E. Horwood, New York (1990).Suche in Google Scholar

[113] Y. Yoshida, G. Langouche (Eds.). Mössbauer Spectroscopy: Tutorial Book, Springer Berlin Heidelberg, Berlin, Heidelberg (2013).10.1007/978-3-642-32220-4Suche in Google Scholar

[114] R. L. Cohen, K. W. West. Chem. Phys. Lett. 13, 482 (1972), https://doi.org/10.1016/0009-2614(72)80085-X.Suche in Google Scholar

[115] R. M. Cigala, F. Crea, C. De Stefano, D. Milea, S. Sammartano, M. Scopelliti. Monatsh. Chem. – Chem. Mon. 144, 761 (2013), https://doi.org/10.1007/s00706-013-0961-3.Suche in Google Scholar

[116] J. Als-Nielsen, D. McMorrow. Elements of Modern X-ray Physics, Wiley, Hoboken, 2nd ed. (2011).10.1002/9781119998365Suche in Google Scholar

[117] M. R. Beccia, G. Creff, C. Den Auwer, C. Di Giorgio, A. Jeanson, H. Michel. ChemPlusChem 87, e202200108 (2022), https://doi.org/10.1002/cplu.202200108.Suche in Google Scholar PubMed

[118] G. Bunker. Introduction to XAFS: A Practical Guide to X-Ray Absorption Fine Structure Spectroscopy, Cambridge University Press, Cambridge, UK; New York (2010).10.1017/CBO9780511809194Suche in Google Scholar

[119] S. Calvin, K. E. Furst. XAFS for Everyone, CRC Press, Boca Raton, Fla (2013).10.1201/b14843Suche in Google Scholar

[120] K. Dardenne, S. Duckworth, X. Gaona, R. Polly, B. Schimmelpfennig, T. Pruessmann, J. Rothe, M. Altmaier, H. Geckeis. Inorg. Chem. 60, 12285 (2021), https://doi.org/10.1021/acs.inorgchem.1c01487.Suche in Google Scholar PubMed

[121] N. A. DiBlasi, A. G. Tasi, M. Trumm, A. Schnurr, X. Gaona, D. Fellhauer, K. Dardenne, J. Rothe, D. T. Reed, A. E. Hixon, M. Altmaier. RSC Adv. 12, 9478 (2022), https://doi.org/10.1039/D1RA09010K.Suche in Google Scholar PubMed PubMed Central

[122] R. Ortega, A. Carmona, I. Llorens, P. L. Solari. J. Anal. At. Spectrom. 27, 2054 (2012), https://doi.org/10.1039/c2ja30224a.Suche in Google Scholar

[123] P. Zimmermann, S. Peredkov, P. M. Abdala, S. DeBeer, M. Tromp, C. Müller, J. A. Van Bokhoven. Coord. Chem. Rev. 423, 213466 (2020), https://doi.org/10.1016/j.ccr.2020.213466.Suche in Google Scholar

[124] C. De Stefano, D. Milea, S. Sammartano. Thermochim. Acta 423, 63 (2004), https://doi.org/10.1016/j.tca.2004.04.017.Suche in Google Scholar

[125] R. M. Cigala, F. Crea, G. Lando, D. Milea, S. Sammartano. J. Chem. Thermodyn. 42, 1393 (2010), https://doi.org/10.1016/j.jct.2010.06.005.Suche in Google Scholar

[126] C. De Stefano, C. Foti, O. Giuffrè, D. Milea. New J. Chem. 40, 1443 (2016), https://doi.org/10.1039/C5NJ02531A.Suche in Google Scholar

[127] C. Sgarlata, K. N. Raymond. Anal. Chem. 88, 6923 (2016), https://doi.org/10.1021/acs.analchem.6b01684.Suche in Google Scholar PubMed

[128] C. Bonaccorso, R. Migliore, M. A. Volkova, G. Arena, C. Sgarlata. Thermochim. Acta 656, 47 (2017), https://doi.org/10.1016/j.tca.2017.08.009.Suche in Google Scholar

[129] P. Di Bernardo, P. L. Zanonato, A. Melchior, R. Portanova, M. Tolazzi, G. R. Choppin, Z. Wang. Inorg. Chem. 47, 1155 (2008), https://doi.org/10.1021/ic701337u.Suche in Google Scholar PubMed

[130] E. C. W. Clarke, D. N. Glew. Trans. Faraday Soc. 62, 539 (1966), https://doi.org/10.1039/tf9666200539.Suche in Google Scholar

[131] C. Bonaccorso, G. Brancatelli, G. Forte, G. Arena, S. Geremia, D. Sciotto, C. Sgarlata. RSC Adv. 4, 53575 (2014), https://doi.org/10.1039/C4RA09353D.Suche in Google Scholar

[132] G. Arena, P. Gans, C. Sgarlata. Anal. Bioanal. Chem. 408, 6413 (2016), https://doi.org/10.1007/s00216-016-9759-6.Suche in Google Scholar PubMed

[133] B. O. Keller, J. Sui, A. B. Young, R. M. Whittal. Anal. Chim. Acta 627, 71 (2008), https://doi.org/10.1016/j.aca.2008.04.043.Suche in Google Scholar PubMed

[134] I. Erngren, J. Haglöf, M. K. R. Engskog, M. Nestor, M. Hedeland, T. Arvidsson, C. Pettersson. J. Chromatogr. A 1600, 174 (2019), https://doi.org/10.1016/j.chroma.2019.04.049.Suche in Google Scholar PubMed

[135] A. R. S. Ross, M. G. Ikonomou, J. A. J. Thompson, K. J. Orians. Anal. Chem. 70, 2225 (1998), https://doi.org/10.1021/ac9711908.Suche in Google Scholar PubMed

[136] V. B. Di Marco, G. G. Bombi. Mass Spectrom. Rev. 25, 347 (2006), https://doi.org/10.1002/mas.20070.Suche in Google Scholar PubMed

[137] R. Hermenau, K. Ishida, S. Gama, B. Hoffmann, M. Pfeifer-Leeg, W. Plass, J. F. Mohr, T. Wichard, H. -P. Saluz, C. Hertweck. Nat. Chem. Biol. 14, 841 (2018), https://doi.org/10.1038/s41589-018-0101-9.Suche in Google Scholar PubMed

[138] D. S. Sholl, J. A. Steckel. Density Functional Theory: A Practical Introduction, Wiley, Hoboken, N.J. (2009).10.1002/9780470447710Suche in Google Scholar

[139] V. Butera. Phys. Chem. Chem. Phys. 26, 7950 (2024), https://doi.org/10.1039.D4CP00266K.10.1039/D4CP00266KSuche in Google Scholar

[140] M. Orio, D. A. Pantazis, F. Neese. Photosynth. Res. 102, 443 (2009), https://doi.org/10.1007/s11120-009-9404-8.Suche in Google Scholar PubMed PubMed Central

[141] S. Ruggieri, S. Mizzoni, C. Nardon, E. Cavalli, C. Sissa, M. Anselmi, P. G. Cozzi, A. Gualandi, M. Sanadar, A. Melchior, F. Zinna, O. G. Willis, L. Di Bari, F. Piccinelli. Inorg. Chem. 62, 8812 (2023), https://doi.org/10.1021/acs.inorgchem.3c00196.Suche in Google Scholar PubMed PubMed Central

[142] R. Cappai, A. Fantasia, G. Barone, M. F. Peana, A. Pelucelli, S. Medici, G. Crisponi, V. M. Nurchi, M. A. Zoroddu. Ecotoxicol. Environ. Saf. 264, 115470 (2023), https://doi.org/10.1016/j.ecoenv.2023.115470.Suche in Google Scholar PubMed

[143] R. Cappai, G. Crisponi, D. Sanna, V. Ugone, A. Melchior, E. Garribba, M. Peana, M. A. Zoroddu, V. M. Nurchi. Pharmaceuticals 14, 1037 (2021), https://doi.org/10.3390/ph14101037.Suche in Google Scholar PubMed PubMed Central

[144] G. A. Corrente, L. Malacaria, A. Beneduci, E. Furia, T. Marino, G. Mazzone. J. Mol. Liq. 325, 115171 (2021), https://doi.org/10.1016/j.molliq.2020.115171.Suche in Google Scholar

[145] A. Melchior, C. Gaillard, S. Gràcia Lanas, M. Tolazzi, I. Billard, S. Georg, L. Sarrasin, M. Boltoeva. Inorg. Chem. 55(7), 3498 (2016), https://doi.org/10.1021/acs.inorgchem.5b02937.Suche in Google Scholar PubMed

[146] J. I. Lachowicz, D. Todde, K. Aberamchuk, G. Picci, S. Murgia, V. M. Nurchi, M. Klepka, D. Kalinowska, G. D. Torre, J. Mujika, X. Lopez, C. Caltagirone. J. Inorg. Biochem. 222, 111520 (2021), https://doi.org/10.1016/j.jinorgbio.2021.111520.Suche in Google Scholar PubMed

[147] X. Wang, D. Toroz, S. Kim, S. L. Clegg, G. -S. Park, D. Di Tommaso. Phys. Chem. Chem. Phys. 22, 16301 (2020), https://doi.org/10.1039/D0CP01957G.Suche in Google Scholar PubMed

[148] E. N. Brothers, A. A. Bengali, G. Scalmani, B. G. Janesko, P. Verma, D. G. Truhlar, M. J. Frisch. J. Phys. Chem. A 127, 9695 (2023), https://doi.org/10.1021/acs.jpca.3c04838.Suche in Google Scholar PubMed

[149] N. Islam, S. Kaya (Eds.). Conceptual Density Functional theory and its Application in the Chemical Domain, Apple Academic Press, Toronto (2018).10.1201/b22471Suche in Google Scholar

[150] S. -C. Qi, J. Hayashi, L. Zhang. RSC Adv. 6, 77375 (2016), https://doi.org/10.1039/C6RA16168E.Suche in Google Scholar

[151] C. Zhao, R. Wu, S. Zhang, X. Hong. J. Phys. Chem. A 127, 6791 (2023), https://doi.org/10.1021/acs.jpca.3c04215.Suche in Google Scholar PubMed

[152] J. N. Harvey. Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 102, 203 (2006), https://doi.org/10.1039/b419105f.Suche in Google Scholar

[153] A. M. Ure, C. M. Davidson (Eds.). Chemical Speciation in the Environment, Blackwell Science, Oxford; Malden, MA, 2nd ed. (2001).10.1002/9780470988312Suche in Google Scholar

[154] A. Tessier, P. G. C. Campbell, M. Bisson. Anal. Chem. 51, 844 (1979), https://doi.org/10.1021/ac50043a017.Suche in Google Scholar

[155] T. Matoušek, Z. Wang, C. Douillet, S. Musil, M. Stýblo. Anal. Chem. 89, 9633 (2017), https://doi.org/10.1021/acs.analchem.7b01868.Suche in Google Scholar PubMed PubMed Central

[156] W. Lorenc, B. Markiewicz, D. Kruszka, P. Kachlicki, D. Barałkiewicz. Molecules 24, 668 (2019), https://doi.org/10.3390/molecules24040668.Suche in Google Scholar PubMed PubMed Central

[157] Y. Ge, P. Murray, W. H. Hendershot. Environ. Pollut. 107, 137 (2000), https://doi.org/10.1016/S0269-7491(99)00119-0.Suche in Google Scholar

[158] D. Guimarães, A. A. Roberts, M. W. Tehrani, R. Huang, L. Smieska, A. R. Woll, S. Lin, P. J. Parsons. J. Anal. At. Spectrom. 33, 1616 (2018), https://doi.org/10.1039/C8JA00094H.Suche in Google Scholar PubMed PubMed Central

[159] M. M. Farinha, Z. Šlejkovec, J. T. Van Elteren, H. T. Wolterbeek, M. C. Freitas. J. Atmospheric Chem. 49, 343 (2004), https://doi.org/10.1007/s10874-004-1248-1.Suche in Google Scholar

[160] S. S. Farías, A. Londonio, C. Quintero, R. Befani, M. Soro, P. Smichowski. Microchem. J. 120, 34 (2015), https://doi.org/10.1016/j.microc.2014.12.010.Suche in Google Scholar

[161] H. Adamu, L. Luter, M. L. Musa, B. A. Umar. Environ. Pollut. 2, 92 (2013), https://doi.org/10.5539/ep.v2n3p92.Suche in Google Scholar

[162] M. Soylak, E. Yilmaz, M. Ghaedi, M. Montazerozohori. Toxicol. Environ. Chem. 93, 873 (2011), https://doi.org/10.1080/02772248.2011.572885.Suche in Google Scholar

[163] D. J. Butcher. Appl. Spectrosc. Rev. 58, 65 (2023), https://doi.org/10.1080/05704928.2021.1919896.Suche in Google Scholar

[164] O. Ozalp, M. Soylak. Talanta 253, 124082 (2023), https://doi.org/10.1016/j.talanta.2022.124082.Suche in Google Scholar

[165] P. Kargarghomsheh, F. Tooryan, G. Sharifiarab, M. Moazzen, N. Shariatifar, M. Arabameri. Biol. Trace Elem. Res. (2023), https://doi.org/10.1007/s12011-023-03795-w.Suche in Google Scholar PubMed

[166] P. Sakuntala, R. Selvaraju, K. Ahmed Jaleeli. Mater. Today Proc. 92, 1129 (2023), https://doi.org/10.1016/j.matpr.2023.05.146.Suche in Google Scholar

[167] B. Markiewicz, A. Sajnóg, W. Lorenc, A. Hanć, I. Komorowicz, J. Suliburska, R. Kocyłowski, D. Barałkiewicz. Talanta 174, 122 (2017), https://doi.org/10.1016/j.talanta.2017.05.078.Suche in Google Scholar PubMed

[168] L. Ruzik, P. Kwiatkowski. Talanta 183, 102 (2018), https://doi.org/10.1016/j.talanta.2018.02.040.Suche in Google Scholar PubMed

[169] S. Zhu, B. Chen, M. He, T. Huang, B. Hu. Talanta 171, 213 (2017), https://doi.org/10.1016/j.talanta.2017.04.068.Suche in Google Scholar PubMed

[170] V. Sladkov, J. Roques, M. Meyer. Electrophoresis 41, 1870 (2020), https://doi.org/10.1002/elps.202000114.Suche in Google Scholar PubMed

[171] Y. Wang, D. I. Adeoye, E. O. Ogunkunle, I. -A. Wei, R. T. Filla, M. G. Roper. Anal. Chem. 93, 295 (2021), https://doi.org/10.1021/acs.analchem.0c04526.Suche in Google Scholar PubMed

[172] V. Sladkov. J. Chromatogr. A 1289, 133 (2013), https://doi.org/10.1016/j.chroma.2013.03.017.Suche in Google Scholar PubMed

Published Online: 2024-04-23
Published in Print: 2024-04-25

© 2024 IUPAC & De Gruyter

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0206/html
Button zum nach oben scrollen