Abstract
De Nora, an Italian multinational corporation listed on Euronext Milan, stands as a notable leader in sustainable technologies, especially within the growing field of green hydrogen. Over its century-long existence, the company has undergone distinct phases, culminating in a significant global role for a greener and more sustainable future. De Nora has substantiated its international presence with a robust network of 25 operational entities, five research centers, and a workforce exceeding 2000 employees. Originating in 1923 under Oronzio De Nora’s vision, the establishment of Oronzio De Nora Impianti Elettrochimici propelled the company into pioneering electrochemical advancements. Initially focusing on chlor-alkali technologies, De Nora’s strategic collaborations and acquisitions facilitated its evolution from a specialized enterprise to a versatile multinational entity. The contemporary phase of De Nora’s journey has been fortified by strategic partnerships, notably with Blackstone Tactical Opportunities and later Snam S.p.A. These alliances align with the need to face climate change and underscore De Nora’s commitment to achieving carbon neutrality by 2050. As the transition to cleaner energy solutions accelerates worldwide, De Nora’s expertise in electrode technology and electrochemical processes positions it as a frontrunner in the green hydrogen revolution. Central to this evolution is the rise of green hydrogen, produced through water electrolysis using renewable sources. De Nora’s research and development initiatives have yielded transformative outcomes, including energy-efficient electrodes and innovative electrode packages tailored for alkaline electrolysis. This focus on efficiency and cost reduction enhances De Nora’s potential to drive the widespread adoption of green hydrogen technology, amplifying its influence on the global energy landscape. De Nora’s impact extends to pivotal global initiatives, exemplified by its role as a strategic partner in NEOM project, an ambitious green hydrogen production facility in Saudi Arabia. Furthermore, De Nora’s contributions resonate in Europe’s largest green hydrogen generation project through collaboration with H2 Green Steel in Sweden. Moreover, a crowning achievement in De Nora’s trajectory is the visionary ‘GigaFactory’, a model of innovation and sustainability made in partnership with Snam. Located near Milan, this pioneering manufacturing hub will embody principles of Industry 4.0, flexibility and automation practices. Supported by the European IPCEI Hydrogen program and the European Commission, this initiative represents a significant stride towards a renewable hydrogen value chain. In conclusion, De Nora’s journey encapsulates a century-long evolution from its electrochemical roots to a dynamic global company propelling sustainable technologies. Anchored by an unwavering commitment to carbon neutrality and bolstered by transformative partnerships, the company embodies innovation and collaborative engagement – essential elements for steering industries towards a sustainable future. In a world united by the necessity of decarbonization, De Nora stands steadfast, carving its role as a symbol of a sustainable future.
Funding source: European Union – NextGenerationEU
Award Identifier / Grant number: GigaFactory – SA.64645 (Italy) CUP F48I22000670006
Bibliography
[1] IRENA. World Energy Transitions Outlook 2023: 1.5°C Pathway, Vol. 1, International Renewable Energy Agency, Abu Dhabi (2023).Search in Google Scholar
[2] IEA. Global Hydrogen Review 2022, IEA, Paris (2022), https://www.iea.org/reports/global-hydrogen-review-2022, License: CC BY 4.0.Search in Google Scholar
[3] IRENA. Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.50C Climate Goal, International Renewable Energy Agency, Abu Dhabi (2020).Search in Google Scholar
[4] Hydrogen Council. Hydrogen Insights 2023 (2023).Search in Google Scholar
[5] European Commission. State Aid (europa.eu) (2022).Search in Google Scholar
© 2024 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Avogadro Colloquia in Rome on “Vision and Opportunities of a Sustainable Hydrogen Society”
- Conference papers
- H2 in the energy transition
- Watching atoms at work during reactions
- Hydrogen production and conversion to chemicals: a zero-carbon puzzle?
- Rethinking chemical production with “green” hydrogen
- Hydrogen as an energy carrier: constraints and opportunities
- Shaping the future of green hydrogen: De Nora’s electrochemical technologies for fueling the energy transition
- In-situ and operando Grazing Incidence XAS: a novel set-up and its application to model Pd electrodes for alcohols oxidation
- Hydrogen storage and handling with hydrides
- Advanced polymer electrolyte membrane water electrolysis for power to gas applications
- Inkjet printed acrylate-urethane modified poly(3,4-ethylenedioxythiophene) flexible conductive films
- Cu(II) complexes using acylhydrazones or cyclen for biocidal antifouling coatings
- Randomly cross-linked amphiphilic copolymer networks of n-butyl acrylate and N,N-dimethylacrylamide: synthesis and characterization
- Roles of electrostatics and intermolecular electronic motions in the structural and spectroscopic features of hydrogen- and halogen-bonded systems
- The accurate assessment of the chemical speciation of complex systems through multi-technique approaches
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Avogadro Colloquia in Rome on “Vision and Opportunities of a Sustainable Hydrogen Society”
- Conference papers
- H2 in the energy transition
- Watching atoms at work during reactions
- Hydrogen production and conversion to chemicals: a zero-carbon puzzle?
- Rethinking chemical production with “green” hydrogen
- Hydrogen as an energy carrier: constraints and opportunities
- Shaping the future of green hydrogen: De Nora’s electrochemical technologies for fueling the energy transition
- In-situ and operando Grazing Incidence XAS: a novel set-up and its application to model Pd electrodes for alcohols oxidation
- Hydrogen storage and handling with hydrides
- Advanced polymer electrolyte membrane water electrolysis for power to gas applications
- Inkjet printed acrylate-urethane modified poly(3,4-ethylenedioxythiophene) flexible conductive films
- Cu(II) complexes using acylhydrazones or cyclen for biocidal antifouling coatings
- Randomly cross-linked amphiphilic copolymer networks of n-butyl acrylate and N,N-dimethylacrylamide: synthesis and characterization
- Roles of electrostatics and intermolecular electronic motions in the structural and spectroscopic features of hydrogen- and halogen-bonded systems
- The accurate assessment of the chemical speciation of complex systems through multi-technique approaches