Startseite Naturwissenschaften Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon

  • Daniel Cohen , Esha Thakur und Michael G. Walter ORCID logo EMAIL logo
Veröffentlicht/Copyright: 20. August 2021

Abstract

Solution-processable conductive polymers are advantageous materials for making inexpensive, electrical junctions to crystalline semiconductors. We have investigated methods to improve the device performance of hybrid solar cells made from n-type silicon and a conductive polymer glue based on a blend of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and D-sorbitol. The PEDOT:PSS blend behaves like a high work function metal creating a Schottky-type junction. The addition of D-sorbitol increases PEDOT:PSS conductivity and provides adhesive properties, allowing the top contact of the solar cell to be laminated onto the silicon substrate. Unfortunately, the addition of the D-sorbitol to the PEDOT:PSS significantly alters the shape of the measured current-voltage performance curve of a crystalline silicon (n-Si)/PEDOT:PSS junction. Under illumination, this results in a decline in the fill factor (FF) and a drop in photocurrent density (J sc) compared to PEDOT:PSS-only devices. We have discovered that the decline in device performance is likely due to surface trap states caused by D-sorbitol/silicon interaction and/or silicon oxidation. X-ray photoelectron spectroscopic (XPS) analysis shows that surface oxidation quickens, and possible silicon surface functionalization with D-sorbitol occurs while processing the D-sorbitol/PEDOT:PSS contact on H-terminated surfaces. To overcome these interface issues, the silicon surface was chemically modified using surface methylation, making it insensitive to D-sorbitol/silicon interactions and surface oxidation during the processing of the PEDOT:PSS polymer blend contact. This also enabled the crystalline silicon (n-Si)/s-PEDOT:PSS device performance to be maintained for longer periods. Using a silicon surface methylation strategy, good device performance could be achieved without changing the adhesive properties of D-sorbitol/PEDOT:PSS polymer blend.


Corresponding author: Michael G. Walter, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223-0001, USA, e-mail:
Article note: A collection of invited papers from members of the IUPAC Polymer Division Celebrating a Centenary of Macromolecules.

Funding source: Department of Chemistry at the University of North Carolina at Charlotte

Funding source: Nanoscale Science Ph.D. Program

Acknowledgments

The authors would like to thank Miguel Caban-Acevedo at Caltech for running XPS analysis on silicon surfaces.

  1. Research funding: This research was funded by the Department of Chemistry at the University of North Carolina at Charlotte, and the Nanoscale Science Ph.D. Program.

References

[1] X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, M. Berggren. Chem. Mater. 18, 4354 (2006), https://doi.org/10.1021/cm061032+.10.1021/cm061032+Suche in Google Scholar

[2] J. S. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello, D. D. C. Bradley. Adv. Funct. Mater. 15, 290 (2005), https://doi.org/10.1002/adfm.200400073.Suche in Google Scholar

[3] M. G. Walter, X. Liu, L. E. O'Leary, B. S. Brunschwig, N. S. Lewis. J. Phys. Chem. C 117, 14485 (2013), https://doi.org/10.1021/jp4018162.Suche in Google Scholar

[4] J. Zhang, Y. F. Zhang, F. T. Zhang, B. Q. Sun. Appl. Phys. Lett. 102, 013501 (2013), https://doi.org/10.1063/1.4773368.Suche in Google Scholar

[5] T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast. Appl. Phys. Lett. 75, 1679 (1999), https://doi.org/10.1063/1.124789.Suche in Google Scholar

[6] M. P. de Jong, L. J. van Ijzendoorn, M. J. A. de Voigt. Appl. Phys. Lett. 77, 2255 (2000), https://doi.org/10.1063/1.1315344.Suche in Google Scholar

[7] H. Y. Ouyang, Y. Yang. Adv. Mater. 18, 2141 (2006), https://doi.org/10.1002/adma.200502475.Suche in Google Scholar

[8] C. Shimada, S. Shiratori. ACS Appl. Mater. Interfaces 5, 11087 (2013), https://doi.org/10.1021/am402698x.Suche in Google Scholar PubMed

[9] A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, R. A. J. Janssen. Org. Electron. 9, 727 (2008), https://doi.org/10.1016/j.orgel.2008.05.006.Suche in Google Scholar

[10] S. Jäckle, M. Liebhaber, J. Niederhausen, M. Büchele, R. Félix, R. G. Wilks, M. Bär, K. Lips, S. Christiansen. ACS Appl. Mater. Interfaces 8, 8841 (2016), https://doi.org/10.1021/acsami.6b01596.Suche in Google Scholar PubMed

[11] H. He, L. Zhang, X. Guan, H. Cheng, X. Liu, S. Yu, J. Wei, J. Ouyang. ACS Appl. Mater. Interfaces 11, 26185 (2019), https://doi.org/10.1021/acsami.9b07325.Suche in Google Scholar PubMed

[12] D. Cohen, M. E. Bostian, L. Nguyen, M. G. Walter. Polym. Int. 67, 853 (2018), https://doi.org/10.1002/pi.5561.Suche in Google Scholar

[13] M. U. Halbich, D. Zielke, R. Gogolin, R. Sauer-Stieglitz, W. Lovenich, J. Schmidt. Sci. Rep. 9, 8 (2019), https://doi.org/10.1038/s41598-019-46280-y.Suche in Google Scholar PubMed PubMed Central

[14] K. A. Nagamatsu, S. Avasthi, J. Jhaveri, J. C. Sturm. IEEE J. Photovolt. 4, 260 (2014).10.1109/JPHOTOV.2013.2287758Suche in Google Scholar

[15] R. Gogolin, D. Zielke, W. Lovenich, R. Sauer, J. Schmidt. Energy Procedia 92, 638 (2016), https://doi.org/10.1016/j.egypro.2016.07.030.Suche in Google Scholar

[16] J. Schmidt, V. Titova, D. Zielke. Appl. Phys. Lett. 103, 4 (2013), https://doi.org/10.1063/1.4827303.Suche in Google Scholar

[17] D. D. M. Wayner, R. A. Wolkow. J. Chem. Soc. Perkin Trans. 2, 23 (2002), https://doi.org/10.1039/b100704l.Suche in Google Scholar

[18] R. Boukherroub, S. Morin, P. Sharpe, D. D. M. Wayner, P. Allongue. Langmuir 16, 7429 (2000), https://doi.org/10.1021/la991678z.Suche in Google Scholar

[19] T. Miura, M. Niwano, D. Shoji, N. Miyamoto. J. Appl. Phys. 79, 4373 (1996), https://doi.org/10.1063/1.362670.Suche in Google Scholar

[20] A. Bansal, X. L. Li, I. Lauermann, N. S. Lewis, S. I. Yi, W. H. Weinberg. J. Am. Chem. Soc. 118, 7225 (1996), https://doi.org/10.1021/ja960348n.Suche in Google Scholar

[21] L. J. Webb, N. S. Lewis. J. Phys. Chem. B 107, 5404 (2003), https://doi.org/10.1021/jp0222752.Suche in Google Scholar

[22] N. T. Plymale, A. A. Ramachandran, A. Lim, B. S. Brunschwig, N. S. Lewis. J. Phys. Chem. C 120, 14157 (2016), https://doi.org/10.1021/acs.jpcc.6b03824.Suche in Google Scholar

[23] M. X. Chen, J. H. Hack, A. Iyer, K. J. Jones, R. L. Opila. J. Phys. Chem. C 121, 21364 (2017), https://doi.org/10.1021/acs.jpcc.7b05686.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/pac-2021-0606).


Published Online: 2021-08-20
Published in Print: 2021-10-26

© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Celebrating a centenary of macromolecules
  5. Invited papers
  6. Hermann Staudinger – Organic chemist and pioneer of macromolecules
  7. On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
  8. Dielectric properties of processed cheese
  9. Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
  10. Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
  11. Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
  12. Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
  13. Preface
  14. The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
  15. Conference papers
  16. Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
  17. Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
  18. Maximizing student learning through the use of demonstrations
  19. Molecular spaces and the dimension paradox
  20. Reaction of OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
  21. In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
  22. Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities
Heruntergeladen am 12.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2021-0606/html
Button zum nach oben scrollen