Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities
-
Aleksandar Živković
and Nora H. de Leeuw
Abstract
Hybrid density functional theory has been used to study the phase stability and formation of native point defects in Cu4O3. This intermediate copper oxide compound, also known as paramelaconite, was observed to be difficult to synthesize due to stabilization issues between mixed-valence Cu1+ and Cu2+ ions. The stability range of Cu4O3 was investigated and shown to be realized in an extremely narrow region of phase space, with Cu2O and CuO forming readily as competing impurity phases. The origin of p-type conductivity is confirmed to arise from specific intrinsic copper vacancies occurring on the 1+ site. Away from the outlined stability region, the dominant charge carriers become oxygen interstitials, impairing the conductivity by creating deep acceptor states in the electronic band gap region and driving the formation of alternative phases. This study further demonstrates the inadequacy of native defects as a source of n-type conductivity and complements existing experimental findings.
Article note:
A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications (VCCA-2020) held on-line, 1–31 August 2020.
Funding source: Cardiff University 10.13039/501100000866
Funding source: Royal Society 10.13039/501100000288
Funding source: Engineering and Physical Sciences Research Council 10.13039/501100000266
Award Identifier / Grant number: EP/S001395/1, EP/L000202
Acknowledgments
We acknowledge the Cardiff University School of Chemistry for a PhD studentship for AŽ and the Royal Society DfID Africa programme for funding. NYD acknowledges the UK Engineering and Physical Sciences Research Council (EPSRC) for funding (Grant No. EP/S001395/1). This work was performed using the computational facilities of the Advanced Research Computing @ Cardiff (ARCCA) Division, Cardiff University. Via our membership of the UK’s HPC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work made use of the ARCHER facility, the UK’s national high-performance computing service, which is funded by the Office of Science and Technology through EPSRC’s High End Computing Programme.
-
Research funding: This work was funded by Cardiff University, Royal Society, and Engineering and Physical Sciences Research Council (EP/S001395/1, EP/L000202).
References
[1] C. Frondel. Am. Mineral. 26, 657 (1941).Search in Google Scholar
[2] N. Datta, J. W. Jeffery. Acta Crystallogr. B 34, 22 (1978), https://doi.org/10.1107/s056774087800223x.Search in Google Scholar
[3] M. O’Keeffe, J.-O. Bovin. Am. Mineral. 63, 180 (1978).Search in Google Scholar
[4] P. E. Morgan, D. E. Partin, B. L. Chamberland, M. O’Keeffe. J. Solid State Chem. 121, 33 (1996), https://doi.org/10.1006/jssc.1996.0005.Search in Google Scholar
[5] L. Zhao, H. Chen, Y. Wang, H. Che, P. Gunawan, Z. Zhong, H. Li, F. Su. Chem. Mater. 24, 1136 (2012), https://doi.org/10.1021/cm203589h.Search in Google Scholar
[6] N. J. Long, A. K. Petford-Long. Ultramicroscopy 20, 151 (1986), https://doi.org/10.1016/0304-3991(86)90181-6.Search in Google Scholar
[7] J. F. Pierson, A. Thobor-Keck, A. Billard. Appl. Surf. Sci. 210, 359 (2003), https://doi.org/10.1016/s0169-4332(03)00108-9.Search in Google Scholar
[8] D. S. Murali, S. Aryasomayajula. Appl. Phys. A 124, 279 (2018), https://doi.org/10.1007/s00339-018-1666-6.Search in Google Scholar
[9] W. Wang, L. Zhu, P. Lv, G. Liu, Y. Yu, J. Li. ACS Appl. Mater. Interfaces 10, 37287 (2018), https://doi.org/10.1021/acsami.8b14470.Search in Google Scholar PubMed
[10] N. Martić, C. Reller, C. Macauley, M. Löffler, B. Schmid, D. Reinisch, E. Volkova, A. Maltenberger, A. Rucki, K. J. J. Mayrhofer, G. Schmid. Adv. Energy Mater. 9, 1901228 (2019).10.1002/aenm.201901228Search in Google Scholar
[11] M. A. M. Patwary, C. Y. Ho, K. Saito, Q. Guo, K. M. Yu, W. Walukiewicz, T. Tanaka. J. Appl. Phys. 127 (2020), https://doi.org/10.1063/1.5144205.Search in Google Scholar
[12] H. S. Kim, P. Yadav, M. Patel, J. Kim, K. Pandey, D. Lim, C. Jeong. Superlattice. Microst. 112, 262 (2017), https://doi.org/10.1016/j.spmi.2017.09.034.Search in Google Scholar
[13] L. Pinsard-Gaudart, J. Rodríguez-Carvajal, A. Gukasov, P. Monod. Phys. Rev. B 69, 104408 (2004), https://doi.org/10.1103/physrevb.69.104408.Search in Google Scholar
[14] D. Djurek, M. Prester, D. Drobac, M. Ivanda, D. Vojta. J. Magn. Magn Mater. 373, 183 (2015), https://doi.org/10.1016/j.jmmm.2014.04.015.Search in Google Scholar
[15] E. M. Tejada-Rosales, J. Rodríguez-Carvajal, N. Casañ-Pastor, P. Alemany, E. Ruiz, M. S. El-Fallah, S. Alvarez, P. Gómez-Romero. Inorg. Chem. 41, 6604 (2002), https://doi.org/10.1021/ic025872b.Search in Google Scholar PubMed
[16] L. Debbichi, M. C. Marco de Lucas, J. F. Pierson, P. Kruger. J. Phys. Chem. C 116, 10232 (2012), https://doi.org/10.1021/jp303096m.Search in Google Scholar
[17] M. Heinemann, B. Eifert, C. Heiliger. Phys. Rev. B 87, 115111 (2013), https://doi.org/10.1103/physrevb.87.115111.Search in Google Scholar
[18] L. Debbichi, M. C. Marco de Lucas, P. Krüger. Mater. Chem. Phys. 148, 293 (2014), https://doi.org/10.1016/j.matchemphys.2014.07.046.Search in Google Scholar
[19] D. S. Murali, A. Subrahmanyam. J. Phys. Appl. Phys. 49, 375102 (2016), https://doi.org/10.1088/0022-3727/49/37/375102.Search in Google Scholar
[20] D. Reppin, A. Polity, B. Meyer, S. Shokovets. Mater. Res. Soc. Symp. Proc. 1494, 25 (2012), https://doi.org/10.1557/opl.2012.1581.Search in Google Scholar
[21] Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-Revurat, Y. P. Chen, F. Soldera, D. Horwat, F. Mücklich, J. F. Pierson. Phys. Rev. B 94, 245418 (2016), https://doi.org/10.1103/physrevb.94.245418.Search in Google Scholar
[22] G. Kresse, D. Joubert. Phys. Rev. B 59, 1758 (1999), https://doi.org/10.1103/physrevb.59.1758.Search in Google Scholar
[23] P. E. Blöchl. Phys. Rev. B 50, 17953 (1994), https://doi.org/10.1103/physrevb.50.17953.Search in Google Scholar PubMed
[24] J. P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996), https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar PubMed
[25] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton. Phys. Rev. B 57, 1505 (1998), https://doi.org/10.1103/physrevb.57.1505.Search in Google Scholar
[26] A. Živković, A. Roldan, N. H. de Leeuw. Phys. Rev. B 99, 035154 (2019).10.1103/PhysRevB.99.035154Search in Google Scholar
[27] J. Heyd, G. E. Scuseria, M. Ernzerhof. J. Chem. Phys. 118, 8207 (2003), https://doi.org/10.1063/1.1564060.Search in Google Scholar
[28] J. Heyd, G. E. Scuseria. J. Chem. Phys. 121, 1187 (2004), https://doi.org/10.1063/1.1760074.Search in Google Scholar PubMed
[29] J. Heyd, G. E. Scuseria, M. Ernzerhof. J. Chem. Phys. 124, 219906 (2006).10.1063/1.2204597Search in Google Scholar
[30] S. Grimme, J. Antony, S. Ehrlich, H. Krieg. J. Chem. Phys. 132, 154104 (2010), https://doi.org/10.1063/1.3382344.Search in Google Scholar PubMed
[31] H. J. Monkhorst, J. D. Pack. Phys. Rev. B 13, 5188 (1976), https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar
[32] M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, H. Wondratschek. Z. für Kristallogr. – Cryst. Mater. 221, 15 (2006), https://doi.org/10.1524/zkri.2006.221.1.15.Search in Google Scholar
[33] M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, H. Wondratschek. Acta Crystallogr. A 62, 115 (2006), https://doi.org/10.1107/s0108767305040286.Search in Google Scholar
[34] M. I. Aroyo, J. M. Perez-Mato, D. Orobengoa, E. Tasci, G. De La Flor, A. Kirov. Bulg. Chem. Commun. 43, 183 (2011).Search in Google Scholar
[35] G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, N. Marzari. Comput. Phys. Commun. 185, 422 (2014), https://doi.org/10.1016/j.cpc.2013.09.015.Search in Google Scholar
[36] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J.-M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, J. R. Yates. J. Phys. Condens. Matter 32, 165902 (2020), https://doi.org/10.1088/1361-648x/ab51ff.Search in Google Scholar
[37] J. Buckeridge, D. Scanlon, A. Walsh, C. Catlow. Comput. Phys. Commun. 185, 330 (2014), https://doi.org/10.1016/j.cpc.2013.08.026.Search in Google Scholar
[38] M. Yu, D. R. Trinkle. J. Chem. Phys. 134, 064111 (2011), https://doi.org/10.1063/1.3553716.Search in Google Scholar PubMed
[39] W. Tang, E. Sanville, G. Henkelman. J. Phys. Condens. Matter 21, 084204 (2009), https://doi.org/10.1088/0953-8984/21/8/084204.Search in Google Scholar PubMed
[40] E. Sanville, S. D. Kenny, R. Smith, G. Henkelman. J. Comput. Chem. 28, 899 (2007), https://doi.org/10.1002/jcc.20575.Search in Google Scholar PubMed
[41] K. Momma, F. Izumi. J. Appl. Crystallogr. 44, 1272 (2011), https://doi.org/10.1107/s0021889811038970.Search in Google Scholar
[42] R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D’Arco, M. Llunell, M. Causà, Y. Noël, L. Maschio, A. Erba, M. Rerat, S. Casassa. in CRYSTAL17 User’s Manual, University of Torino, Torino (2017).Search in Google Scholar
[43] R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman. WIREs Comput. Mol. Sci. 8, 1 (2018), https://doi.org/10.1002/wcms.1360.Search in Google Scholar
[44] J. Linnera, G. Sansone, L. Maschio, A. J. Karttunen. J. Phys. Chem. C 122, 15180 (2018), https://doi.org/10.1021/acs.jpcc.8b04281.Search in Google Scholar PubMed PubMed Central
[45] J. Linnera, A. J. Karttunen. Phys. Rev. B 96, 014304 (2017), https://doi.org/10.1103/physrevb.96.014304.Search in Google Scholar
[46] J. H. Skone, M. Govoni, G. Galli. Phys. Rev. B 89, 195112 (2014), https://doi.org/10.1103/physrevb.89.195112.Search in Google Scholar
[47] A. Erba. J. Phys. Condens. Matter 29, 314001 (2017), https://doi.org/10.1088/1361-648x/aa7823.Search in Google Scholar
[48] A. Živković, N. H. de Leeuw, B. G. Searle, L. Bernasconi. J. Phys. Chem. C 124, 24995 (2020).10.1021/acs.jpcc.0c08270Search in Google Scholar
[49] D. Broberg, B. Medasani, N. E. Zimmermann, G. Yu, A. Canning, M. Haranczyk, M. Asta, G. Hautier. Comput. Phys. Commun. 226, 165 (2018), https://doi.org/10.1016/j.cpc.2018.01.004.Search in Google Scholar
[50] C. G. Van De Walle, J. Neugebauer. J. Appl. Phys. 95, 3851 (2004), https://doi.org/10.1063/1.1682673.Search in Google Scholar
[51] S. B. Zhang, J. E. Northrup. Phys. Rev. Lett. 67, 2339 (1991), https://doi.org/10.1103/physrevlett.67.2339.Search in Google Scholar PubMed
[52] C. Freysoldt, J. Neugebauer, C. G. Van de Walle. Phys. Rev. Lett. 102, 016402 (2009), https://doi.org/10.1103/physrevlett.102.016402.Search in Google Scholar PubMed
[53] X. Rocquefelte, M.-H. Whangbo, A. Villesuzanne, S. Jobic, F. Tran, K. Schwarz, P. Blaha. J. Phys. Condens. Matter 22, 045502 (2010), https://doi.org/10.1088/0953-8984/22/4/045502.Search in Google Scholar PubMed
[54] X. Rocquefelte, K. Schwarz, P. Blaha. Sci. Rep. 2, 759 (2012), https://doi.org/10.1038/srep00759.Search in Google Scholar PubMed PubMed Central
[55] Z. Jiang, S. Tian, S. Lai, R. D. McAuliffe, S. P. Rogers, M. Shim, D. P. Shoemaker. Chem. Mater. 28, 3080 (2016), https://doi.org/10.1021/acs.chemmater.6b00421.Search in Google Scholar
[56] J. Thanuja, Udayabhanu, G. Nagaraju, H. R. Naika. SN Appl. Sci. 1, 1646 (2019), https://doi.org/10.1007/s42452-019-1556-3.Search in Google Scholar
[57] A. Srikhaow, S. M. Smith. Appl. Catal. B Environ. 130–131, 84 (2013), https://doi.org/10.1016/j.apcatb.2012.10.018.Search in Google Scholar
[58] J. Medina-Valtierra, C. Frausto-Reyes, G. Camarillo-Martínez, J. A. Ramírez-Ortiz. Appl. Catal. Gen. 356, 36 (2009), https://doi.org/10.1016/j.apcata.2008.12.014.Search in Google Scholar
[59] D. R. Lide. CRC Handbook of Chemistry and Physics, Internet Version 2005, CRC Press, Boca Raton, FL (2005).Search in Google Scholar
[60] K. J. Blobaum, D. Van Heerden, A. J. Wagner, D. H. Fairbrother, T. P. Weihs. J. Mater. Res. 18, 1535 (2003), https://doi.org/10.1557/jmr.2003.0212.Search in Google Scholar
[61] C. L. Bailey, L. Liborio, G. Mallia, S. Tomić, N. M. Harrison. Phys. Rev. B 81, 205214 (2010), https://doi.org/10.1103/physrevb.81.205214.Search in Google Scholar
© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Celebrating a centenary of macromolecules
- Invited papers
- Hermann Staudinger – Organic chemist and pioneer of macromolecules
- On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
- Dielectric properties of processed cheese
- Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
- Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
- Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
- Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
- Preface
- The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
- Conference papers
- Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
- Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
- Maximizing student learning through the use of demonstrations
- Molecular spaces and the dimension paradox
- Reaction of •OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
- In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
- Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Celebrating a centenary of macromolecules
- Invited papers
- Hermann Staudinger – Organic chemist and pioneer of macromolecules
- On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
- Dielectric properties of processed cheese
- Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
- Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
- Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
- Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
- Preface
- The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
- Conference papers
- Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
- Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
- Maximizing student learning through the use of demonstrations
- Molecular spaces and the dimension paradox
- Reaction of •OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
- In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
- Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities