Home Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities
Article
Licensed
Unlicensed Requires Authentication

Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities

  • Aleksandar Živković , Jacobina Sheehama , Michael E. A. Warwick , Daniel R. Jones , Claire Mitchel , Daniel Likius , Veikko Uahengo , Nelson Y. Dzade , Sankar Meenakshisundaram , Charles W. Dunnill EMAIL logo and Nora H. de Leeuw EMAIL logo
Published/Copyright: July 13, 2021

Abstract

Hybrid density functional theory has been used to study the phase stability and formation of native point defects in Cu4O3. This intermediate copper oxide compound, also known as paramelaconite, was observed to be difficult to synthesize due to stabilization issues between mixed-valence Cu1+ and Cu2+ ions. The stability range of Cu4O3 was investigated and shown to be realized in an extremely narrow region of phase space, with Cu2O and CuO forming readily as competing impurity phases. The origin of p-type conductivity is confirmed to arise from specific intrinsic copper vacancies occurring on the 1+ site. Away from the outlined stability region, the dominant charge carriers become oxygen interstitials, impairing the conductivity by creating deep acceptor states in the electronic band gap region and driving the formation of alternative phases. This study further demonstrates the inadequacy of native defects as a source of n-type conductivity and complements existing experimental findings.


Article note:

A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications (VCCA-2020) held on-line, 1–31 August 2020.



Corresponding authors: Charles W. Dunnill, Energy Safety Research Institute, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK; and Nora H. de Leeuw, School of Chemistry, Cardiff University, Main Building Park Place, Cardiff CF10 3AT, UK; Department of Earth Sciences, Utrecht University, Princetonlaan 8a, 3548CB Utrecht, The Netherlands; and School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK, (C. W. Dunnill), (N. H. de Leeuw)

Funding source: Cardiff University 10.13039/501100000866

Funding source: Royal Society 10.13039/501100000288

Funding source: Engineering and Physical Sciences Research Council 10.13039/501100000266

Award Identifier / Grant number: EP/S001395/1, EP/L000202

Acknowledgments

We acknowledge the Cardiff University School of Chemistry for a PhD studentship for AŽ and the Royal Society DfID Africa programme for funding. NYD acknowledges the UK Engineering and Physical Sciences Research Council (EPSRC) for funding (Grant No. EP/S001395/1). This work was performed using the computational facilities of the Advanced Research Computing @ Cardiff (ARCCA) Division, Cardiff University. Via our membership of the UK’s HPC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work made use of the ARCHER facility, the UK’s national high-performance computing service, which is funded by the Office of Science and Technology through EPSRC’s High End Computing Programme.

  1. Research funding: This work was funded by Cardiff University, Royal Society, and Engineering and Physical Sciences Research Council (EP/S001395/1, EP/L000202).

References

[1] C. Frondel. Am. Mineral. 26, 657 (1941).Search in Google Scholar

[2] N. Datta, J. W. Jeffery. Acta Crystallogr. B 34, 22 (1978), https://doi.org/10.1107/s056774087800223x.Search in Google Scholar

[3] M. O’Keeffe, J.-O. Bovin. Am. Mineral. 63, 180 (1978).Search in Google Scholar

[4] P. E. Morgan, D. E. Partin, B. L. Chamberland, M. O’Keeffe. J. Solid State Chem. 121, 33 (1996), https://doi.org/10.1006/jssc.1996.0005.Search in Google Scholar

[5] L. Zhao, H. Chen, Y. Wang, H. Che, P. Gunawan, Z. Zhong, H. Li, F. Su. Chem. Mater. 24, 1136 (2012), https://doi.org/10.1021/cm203589h.Search in Google Scholar

[6] N. J. Long, A. K. Petford-Long. Ultramicroscopy 20, 151 (1986), https://doi.org/10.1016/0304-3991(86)90181-6.Search in Google Scholar

[7] J. F. Pierson, A. Thobor-Keck, A. Billard. Appl. Surf. Sci. 210, 359 (2003), https://doi.org/10.1016/s0169-4332(03)00108-9.Search in Google Scholar

[8] D. S. Murali, S. Aryasomayajula. Appl. Phys. A 124, 279 (2018), https://doi.org/10.1007/s00339-018-1666-6.Search in Google Scholar

[9] W. Wang, L. Zhu, P. Lv, G. Liu, Y. Yu, J. Li. ACS Appl. Mater. Interfaces 10, 37287 (2018), https://doi.org/10.1021/acsami.8b14470.Search in Google Scholar PubMed

[10] N. Martić, C. Reller, C. Macauley, M. Löffler, B. Schmid, D. Reinisch, E. Volkova, A. Maltenberger, A. Rucki, K. J. J. Mayrhofer, G. Schmid. Adv. Energy Mater. 9, 1901228 (2019).10.1002/aenm.201901228Search in Google Scholar

[11] M. A. M. Patwary, C. Y. Ho, K. Saito, Q. Guo, K. M. Yu, W. Walukiewicz, T. Tanaka. J. Appl. Phys. 127 (2020), https://doi.org/10.1063/1.5144205.Search in Google Scholar

[12] H. S. Kim, P. Yadav, M. Patel, J. Kim, K. Pandey, D. Lim, C. Jeong. Superlattice. Microst. 112, 262 (2017), https://doi.org/10.1016/j.spmi.2017.09.034.Search in Google Scholar

[13] L. Pinsard-Gaudart, J. Rodríguez-Carvajal, A. Gukasov, P. Monod. Phys. Rev. B 69, 104408 (2004), https://doi.org/10.1103/physrevb.69.104408.Search in Google Scholar

[14] D. Djurek, M. Prester, D. Drobac, M. Ivanda, D. Vojta. J. Magn. Magn Mater. 373, 183 (2015), https://doi.org/10.1016/j.jmmm.2014.04.015.Search in Google Scholar

[15] E. M. Tejada-Rosales, J. Rodríguez-Carvajal, N. Casañ-Pastor, P. Alemany, E. Ruiz, M. S. El-Fallah, S. Alvarez, P. Gómez-Romero. Inorg. Chem. 41, 6604 (2002), https://doi.org/10.1021/ic025872b.Search in Google Scholar PubMed

[16] L. Debbichi, M. C. Marco de Lucas, J. F. Pierson, P. Kruger. J. Phys. Chem. C 116, 10232 (2012), https://doi.org/10.1021/jp303096m.Search in Google Scholar

[17] M. Heinemann, B. Eifert, C. Heiliger. Phys. Rev. B 87, 115111 (2013), https://doi.org/10.1103/physrevb.87.115111.Search in Google Scholar

[18] L. Debbichi, M. C. Marco de Lucas, P. Krüger. Mater. Chem. Phys. 148, 293 (2014), https://doi.org/10.1016/j.matchemphys.2014.07.046.Search in Google Scholar

[19] D. S. Murali, A. Subrahmanyam. J. Phys. Appl. Phys. 49, 375102 (2016), https://doi.org/10.1088/0022-3727/49/37/375102.Search in Google Scholar

[20] D. Reppin, A. Polity, B. Meyer, S. Shokovets. Mater. Res. Soc. Symp. Proc. 1494, 25 (2012), https://doi.org/10.1557/opl.2012.1581.Search in Google Scholar

[21] Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-Revurat, Y. P. Chen, F. Soldera, D. Horwat, F. Mücklich, J. F. Pierson. Phys. Rev. B 94, 245418 (2016), https://doi.org/10.1103/physrevb.94.245418.Search in Google Scholar

[22] G. Kresse, D. Joubert. Phys. Rev. B 59, 1758 (1999), https://doi.org/10.1103/physrevb.59.1758.Search in Google Scholar

[23] P. E. Blöchl. Phys. Rev. B 50, 17953 (1994), https://doi.org/10.1103/physrevb.50.17953.Search in Google Scholar PubMed

[24] J. P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996), https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar PubMed

[25] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton. Phys. Rev. B 57, 1505 (1998), https://doi.org/10.1103/physrevb.57.1505.Search in Google Scholar

[26] A. Živković, A. Roldan, N. H. de Leeuw. Phys. Rev. B 99, 035154 (2019).10.1103/PhysRevB.99.035154Search in Google Scholar

[27] J. Heyd, G. E. Scuseria, M. Ernzerhof. J. Chem. Phys. 118, 8207 (2003), https://doi.org/10.1063/1.1564060.Search in Google Scholar

[28] J. Heyd, G. E. Scuseria. J. Chem. Phys. 121, 1187 (2004), https://doi.org/10.1063/1.1760074.Search in Google Scholar PubMed

[29] J. Heyd, G. E. Scuseria, M. Ernzerhof. J. Chem. Phys. 124, 219906 (2006).10.1063/1.2204597Search in Google Scholar

[30] S. Grimme, J. Antony, S. Ehrlich, H. Krieg. J. Chem. Phys. 132, 154104 (2010), https://doi.org/10.1063/1.3382344.Search in Google Scholar PubMed

[31] H. J. Monkhorst, J. D. Pack. Phys. Rev. B 13, 5188 (1976), https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar

[32] M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, H. Wondratschek. Z. für Kristallogr. – Cryst. Mater. 221, 15 (2006), https://doi.org/10.1524/zkri.2006.221.1.15.Search in Google Scholar

[33] M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, H. Wondratschek. Acta Crystallogr. A 62, 115 (2006), https://doi.org/10.1107/s0108767305040286.Search in Google Scholar

[34] M. I. Aroyo, J. M. Perez-Mato, D. Orobengoa, E. Tasci, G. De La Flor, A. Kirov. Bulg. Chem. Commun. 43, 183 (2011).Search in Google Scholar

[35] G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, N. Marzari. Comput. Phys. Commun. 185, 422 (2014), https://doi.org/10.1016/j.cpc.2013.09.015.Search in Google Scholar

[36] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J.-M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, J. R. Yates. J. Phys. Condens. Matter 32, 165902 (2020), https://doi.org/10.1088/1361-648x/ab51ff.Search in Google Scholar

[37] J. Buckeridge, D. Scanlon, A. Walsh, C. Catlow. Comput. Phys. Commun. 185, 330 (2014), https://doi.org/10.1016/j.cpc.2013.08.026.Search in Google Scholar

[38] M. Yu, D. R. Trinkle. J. Chem. Phys. 134, 064111 (2011), https://doi.org/10.1063/1.3553716.Search in Google Scholar PubMed

[39] W. Tang, E. Sanville, G. Henkelman. J. Phys. Condens. Matter 21, 084204 (2009), https://doi.org/10.1088/0953-8984/21/8/084204.Search in Google Scholar PubMed

[40] E. Sanville, S. D. Kenny, R. Smith, G. Henkelman. J. Comput. Chem. 28, 899 (2007), https://doi.org/10.1002/jcc.20575.Search in Google Scholar PubMed

[41] K. Momma, F. Izumi. J. Appl. Crystallogr. 44, 1272 (2011), https://doi.org/10.1107/s0021889811038970.Search in Google Scholar

[42] R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D’Arco, M. Llunell, M. Causà, Y. Noël, L. Maschio, A. Erba, M. Rerat, S. Casassa. in CRYSTAL17 User’s Manual, University of Torino, Torino (2017).Search in Google Scholar

[43] R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman. WIREs Comput. Mol. Sci. 8, 1 (2018), https://doi.org/10.1002/wcms.1360.Search in Google Scholar

[44] J. Linnera, G. Sansone, L. Maschio, A. J. Karttunen. J. Phys. Chem. C 122, 15180 (2018), https://doi.org/10.1021/acs.jpcc.8b04281.Search in Google Scholar PubMed PubMed Central

[45] J. Linnera, A. J. Karttunen. Phys. Rev. B 96, 014304 (2017), https://doi.org/10.1103/physrevb.96.014304.Search in Google Scholar

[46] J. H. Skone, M. Govoni, G. Galli. Phys. Rev. B 89, 195112 (2014), https://doi.org/10.1103/physrevb.89.195112.Search in Google Scholar

[47] A. Erba. J. Phys. Condens. Matter 29, 314001 (2017), https://doi.org/10.1088/1361-648x/aa7823.Search in Google Scholar

[48] A. Živković, N. H. de Leeuw, B. G. Searle, L. Bernasconi. J. Phys. Chem. C 124, 24995 (2020).10.1021/acs.jpcc.0c08270Search in Google Scholar

[49] D. Broberg, B. Medasani, N. E. Zimmermann, G. Yu, A. Canning, M. Haranczyk, M. Asta, G. Hautier. Comput. Phys. Commun. 226, 165 (2018), https://doi.org/10.1016/j.cpc.2018.01.004.Search in Google Scholar

[50] C. G. Van De Walle, J. Neugebauer. J. Appl. Phys. 95, 3851 (2004), https://doi.org/10.1063/1.1682673.Search in Google Scholar

[51] S. B. Zhang, J. E. Northrup. Phys. Rev. Lett. 67, 2339 (1991), https://doi.org/10.1103/physrevlett.67.2339.Search in Google Scholar PubMed

[52] C. Freysoldt, J. Neugebauer, C. G. Van de Walle. Phys. Rev. Lett. 102, 016402 (2009), https://doi.org/10.1103/physrevlett.102.016402.Search in Google Scholar PubMed

[53] X. Rocquefelte, M.-H. Whangbo, A. Villesuzanne, S. Jobic, F. Tran, K. Schwarz, P. Blaha. J. Phys. Condens. Matter 22, 045502 (2010), https://doi.org/10.1088/0953-8984/22/4/045502.Search in Google Scholar PubMed

[54] X. Rocquefelte, K. Schwarz, P. Blaha. Sci. Rep. 2, 759 (2012), https://doi.org/10.1038/srep00759.Search in Google Scholar PubMed PubMed Central

[55] Z. Jiang, S. Tian, S. Lai, R. D. McAuliffe, S. P. Rogers, M. Shim, D. P. Shoemaker. Chem. Mater. 28, 3080 (2016), https://doi.org/10.1021/acs.chemmater.6b00421.Search in Google Scholar

[56] J. Thanuja, Udayabhanu, G. Nagaraju, H. R. Naika. SN Appl. Sci. 1, 1646 (2019), https://doi.org/10.1007/s42452-019-1556-3.Search in Google Scholar

[57] A. Srikhaow, S. M. Smith. Appl. Catal. B Environ. 130–131, 84 (2013), https://doi.org/10.1016/j.apcatb.2012.10.018.Search in Google Scholar

[58] J. Medina-Valtierra, C. Frausto-Reyes, G. Camarillo-Martínez, J. A. Ramírez-Ortiz. Appl. Catal. Gen. 356, 36 (2009), https://doi.org/10.1016/j.apcata.2008.12.014.Search in Google Scholar

[59] D. R. Lide. CRC Handbook of Chemistry and Physics, Internet Version 2005, CRC Press, Boca Raton, FL (2005).Search in Google Scholar

[60] K. J. Blobaum, D. Van Heerden, A. J. Wagner, D. H. Fairbrother, T. P. Weihs. J. Mater. Res. 18, 1535 (2003), https://doi.org/10.1557/jmr.2003.0212.Search in Google Scholar

[61] C. L. Bailey, L. Liborio, G. Mallia, S. Tomić, N. M. Harrison. Phys. Rev. B 81, 205214 (2010), https://doi.org/10.1103/physrevb.81.205214.Search in Google Scholar

Published Online: 2021-07-13
Published in Print: 2021-10-26

© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Celebrating a centenary of macromolecules
  5. Invited papers
  6. Hermann Staudinger – Organic chemist and pioneer of macromolecules
  7. On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
  8. Dielectric properties of processed cheese
  9. Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
  10. Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
  11. Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
  12. Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
  13. Preface
  14. The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
  15. Conference papers
  16. Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
  17. Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
  18. Maximizing student learning through the use of demonstrations
  19. Molecular spaces and the dimension paradox
  20. Reaction of OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
  21. In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
  22. Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities
Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2021-0114/html
Scroll to top button