Startseite Separation of phenols from oils using deep eutectic solvents and ionic liquids
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Separation of phenols from oils using deep eutectic solvents and ionic liquids

  • Yucui Hou , Zhi Feng , Jaime Ruben Sossa Cuellar und Weize Wu ORCID logo EMAIL logo
Veröffentlicht/Copyright: 23. September 2020

Abstract

Phenolic compounds are important basic materials for the organic chemical industry, such as pesticides, medicines and preservatives. Phenolic compounds can be obtained from biomass, coal and petroleum via pyrolysis and liquefaction, but they are mixtures in oil. The traditional methods to separate phenols from oil using alkaline washing are not environmentally benign. To solve the problems, deep eutectic solvents (DESs) and ionic liquids (ILs) have been developed to separate phenols from oil, which shows high efficiency and environmental friendliness. In this article, we summarized the properties of DESs and ILs and the applications of DESs and ILs in the separation of phenols and oil. There are two ways in which DESs and ILs are used in these applications: (1) DESs formed in situ using different hydrogen bonding acceptors including quaternary ammonium salts, zwitterions, imidazoles and amides; (2) DESs and ILs used as extractants. The effect of water on the separation, mass transfer dynamics in the separation process, removal of neutral oil entrained in DESs, phase diagrams of phenol + oil + extractant during extraction, are also discussed. In the last, we analyze general trends for the separation and evaluate the problematic or challenging aspects in the separation of phenols from oil mixtures.


Corresponding author: Weize Wu, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China, Phone/Fax: +86 10 64427603, E-mail:

Article note: A collection of invited papers based on presentations at the 36th International Conference of Solution Chemistry (ICSC-36), held in Xining, China, 4–8 August 2019.


Funding source: National Basic Research Program of China

Award Identifier / Grant number: 2011CB201303

Acknowledgment

The authors thank the long-term subsidy mechanism from the Ministry of Finance and the Ministry of Education of PRC.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is financially supported by the National Basic Research Program of China (2011CB201303).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] C. Amen-Chen, H. Pakdel, C. Roy. Biomass Bioenergy 13, 25–37 (1997).10.1016/S0961-9534(97)00021-4Suche in Google Scholar

[2] K. Erdmann, T. Mohan, J. G. Verkade. Energy Fuels 10, 378–385 (1996).10.1021/ef950122qSuche in Google Scholar

[3] J. H. Li, C. Wang, Z. Y. Yang. J. Anal. Appl. Pyrol. 89, 218–224 (2010).10.1016/j.jaap.2010.08.004Suche in Google Scholar

[4] Z. Shah, R. C. Veses, M. A. Ceschi, R. D. Silva. Mod. Chem. Appl. 5, 1–8 (2017).10.11648/j.mc.20170501.11Suche in Google Scholar

[5] T. T. Jiao, M. M. Gong, X. L. Zhuang, C. S. Li, S. J. Zhang. J. Ind. Eng. Chem. 29, 344–348 (2015).10.1016/j.jiec.2015.04.013Suche in Google Scholar

[6] E. L. Smith, A. P. Abbott, K. S. Ryder. Chem. Rev. 114, 11060–11082 (2014).10.1021/cr300162pSuche in Google Scholar PubMed

[7] A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, R. K. Rasheed. J. Am. Chem. Soc. 126, 9142–9147 (2004).10.1021/ja048266jSuche in Google Scholar PubMed

[8] A. P. Abbott, R. C. Harris, K. S. Ryder, C. D’Agostino, L. F. Gladden, M. D. Mantle. Green Chem. 13, 82–90 (2011).10.1039/C0GC00395FSuche in Google Scholar

[9] K. Pang, Y. Hou, W. Wu, W. Guo, W. Peng, K. N. Marsh. Green Chem. 14, 2398–2401 (2012).10.1039/c2gc35400dSuche in Google Scholar

[10] Y. C. Hou, Y. H. Ren, W. Peng, S. H. Ren, W. Z. Wu. Ind. Eng. Chem. Res. 52, 18071–18075 (2013).10.1021/ie403849gSuche in Google Scholar

[11] Y. C. Hou, C. F. Yao, W. Z. Wi. Acta Phys. Chim. Sin. 34, 873–885 (2018).10.3866/PKU.WHXB201802062Suche in Google Scholar

[12] S. H. Ren, Y. C. Hou, K. Zhang, W. Z. Wu. Green Energy Environ. 3, 179–190 (2018).10.1016/j.gee.2017.11.003Suche in Google Scholar

[13] Y. C. Hou, Z. Wang, S. H. Ren, W. Z. Wu. Chin. Sci. Bull. 60, 2490–2499 (2015).10.1360/N972015-00385Suche in Google Scholar

[14] S. N. P. M. Ventura, F. A. E. Silva, M. V. Quental, D. Mondal, M. G. Freire, J. O. A. P. Coutinho. Chem. Rev. 117, 6984–7052 (2017).10.1021/acs.chemrev.6b00550Suche in Google Scholar PubMed PubMed Central

[15] W. J. Guo, Y. C. Hou, W. Z. Wu, S. H. Ren, S. D. Tian, K. N. Marsh. Green Chem. 15, 226–229 (2013).10.1039/C2GC36602ASuche in Google Scholar

[16] C. F. Yao, Y. C. Hou, S. H. Ren, W. Z. Wu, Y. A. Ji, H. Liu. Fuel Process. Technol. 178, 206–212 (2018).10.1016/j.fuproc.2018.05.031Suche in Google Scholar

[17] Y. Zhang, Z. Y. Li, H. Y. Wang, X. P. Xuan, J. J. Wang. Sep. Purif. Technol. 163, 310–8 (2016).10.1016/j.seppur.2016.03.014Suche in Google Scholar

[18] C. Yao, Y. Hou, S. Ren, W. Wu, K. Zhang, Y. Ji, H. Liu. Chem. Eng. J. 326, 620–626 (2017).10.1016/j.cej.2017.06.007Suche in Google Scholar

[19] T. T. Jiao, C. S. Li, X. L. Zhuang, S. S. Cao, H. N. Chen, S. J. Zhang. Chem. Eng. J. 266, 148–155 (2015).10.1016/j.cej.2014.12.071Suche in Google Scholar

[20] T. T. Jiao, X. L. Zhuang, H. Y. He, C. S. Li, H. N. Chen, S. J. Zhang. Ind. Eng. Chem. Res. 54, 2573–2579 (2015).10.1021/ie504892gSuche in Google Scholar

[21] T. Gu, M. Zhang, T. Tan, J. Chen, Z. Li, Q. Zhang, H. Qiu. Chem. Commun. 50, 11749–11752 (2014).10.1039/C4CC04661GSuche in Google Scholar

[22] L. Yi, J. Feng, W. Y. Li, Z. Y. Luo. ACS Sustain. Chem. Eng. 7, 7777–7783 (2019).10.1021/acssuschemeng.8b06734Suche in Google Scholar

[23] M. C. Bubalo, N. Ćurko, M. Tomašević, K. K. Ganić, I. R. Redovnikovic. Food Chem. 200, 159–166 (2016).10.1016/j.foodchem.2016.01.040Suche in Google Scholar PubMed

[24] T. T. Jiao, X. Z. Qin, H. W. Zhang, W. R. Zhang, Y. Q. Zhang, P. Liang. Chem. Eng. Res. Design 145, 112–121 (2019).10.1016/j.cherd.2019.03.006Suche in Google Scholar

[25] A. García, E. Rodríguez-Juan, G. Rodríguez-Gutiérrez, J. J. Rios, J. Fernández-Bolaños. Food Chem. 197, 554–561 (2016).10.1016/j.foodchem.2015.10.131Suche in Google Scholar PubMed

[26] N. Sidek, N. S. A. Manan, S. Mohamad. J. Mol. Liquids 240, 794–802 (2017).10.1016/j.molliq.2017.05.111Suche in Google Scholar

[27] Z. Y. Li, R. P. Li, X. Q. Yuan, Y. C. Pei, Y. L. Zhao, H. Y. Wang, J. J. Wang. Green Energy Environ. 4, 131–138 (2019).10.1016/j.gee.2019.01.011Suche in Google Scholar

[28] C. F. Yao, Y. C. Hou, S. H. Ren, Y. A. Ji, W. Z. Wu, H. Liu. Chem. Eng. Process. Process Intensif. 128, 216–222 (2018).10.1016/j.cep.2018.04.026Suche in Google Scholar

[29] Y. A. Ji, Y. C. Hou, S. H. Ren, C. F. Yao, W. Z. Wu. Energy Fuels 31, 10274–10282 (2017).10.1021/acs.energyfuels.7b01793Suche in Google Scholar

[30] Y. A. Ji, Y. C. Hou, S. H. Ren, C. F. Yao, W. Z. Wu. Energy Fuels 32, 11046–11054 (2018).10.1021/acs.energyfuels.8b02166Suche in Google Scholar

[31] L. Cesari, L. Canabady-Rochelle, F. Mutelet. Purif. Technol. 209, 528–534 (2019).10.1016/j.seppur.2018.07.083Suche in Google Scholar

[32] Q. W. Yang, H. B. Xing, B. Su, Z. B. Bao, J. Wang, Y. W. Yang, Q. L. Ren. AIChE J. 59, 1657–1667 (2013).10.1002/aic.13939Suche in Google Scholar

[33] Y. C. Hou, C. F. Yao, W. Z. Wu. Acta Phys. Chim. Sin. 34, 873–885 (2018).10.3866/PKU.WHXB201802062Suche in Google Scholar

[34] B. Tang, K. H. Row. Monatsh. Chem. 144, 1247–1454 (2013).10.1007/s00706-013-1053-0Suche in Google Scholar

[35] W. J. Guo, Y. C. Hou, S. H. Ren, S. D. Tian, W. Z. Wu. J. Chem. Eng. Data 58, 866–872 (2013).10.1021/je300997vSuche in Google Scholar

[36] J. H. Zhu, K. K. Yu, Y. G. Zhu, R. Y. Zhu, F. F. Ye, N. Song, Y. J. Xu. J. Mol. Liquids 232, 182–187 (2017).10.1016/j.molliq.2017.02.071Suche in Google Scholar

[37] W. Y. Tang, L. L. Liu, G. Z. Li, Tao Zhu, K. H. Row. Korean J. Chem. Eng. 34, 814–821 (2017).10.1007/s11814-016-0316-ySuche in Google Scholar

[38] Y. C. Hou, W. Peng, C. M. Yang, S. Y. Li, W. Z. Wu. CIESC J. 64, 118–123 (2013).Suche in Google Scholar

[39] H. Meng, C. T. Ge, N. N. Ren, W. Y. Ma, Y. Z. Lu, C. X. Li. Ind. Eng. Chem. Res. 53, 355–362 (2013).10.1021/ie402599dSuche in Google Scholar

[40] Y. A. Ji, Y. C. Hou, S. H. Ren, C. F. Yao, W. Z. Wu. Fuel Process. Technol. 171, 181–191 (2018).Suche in Google Scholar

[41] S. H. Ren, Y. Xiao, Y. M. Wang, J. Kong, Y. C. Hou, W. Z. Wu. Fuel Process. Technol. 137, 104–108 (2015).10.1016/j.fuproc.2015.04.004Suche in Google Scholar

[42] Y. C. Hou, J. Kong, Y. H. Ren, S. H. Ren, W. Z. Wu. Sep. Purif. Technol. 174, 554–560 (2017).10.1016/j.seppur.2016.10.038Suche in Google Scholar

[43] Z. Wang, Y. C. Hou, S. H. Ren, J. Kong, W. Z. Wu. CIESC J. 66, 247–252 (2015).Suche in Google Scholar

[44] Y. A. Ji, Y. C. Hou, S. H. Ren, C. F. Yao, W. Z. Wu. Fuel Process. Technol. 160, 27–33 (2017).10.1016/j.fuproc.2017.02.004Suche in Google Scholar

[45] Z. Q. Lin, Y. C. Hou, S. H. Ren, Y. A. Ji, C. F. Yao, M. G. Niu, W. Z. Wu. Fluid Phase Equil. 429, 67–75 (2016).10.1016/j.fluid.2016.08.013Suche in Google Scholar

[46] C. F. Yao, Y. C. Hou, S. H. Ren, Y. A. Ji, W. Z. Wu. Fluid Phase Equil. 448, 116–122 (2017).10.1016/j.fluid.2017.05.001Suche in Google Scholar

Published Online: 2020-09-23
Published in Print: 2020-10-25

© 2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Selected papers from the 36th International Conference on Solution Chemistry (ICSC-36)
  5. Conference papers
  6. Using computational chemistry to explore experimental solvent parameters – solvent basicity, acidity and polarity/polarizability
  7. Solution chemistry in the surface region of aqueous solutions
  8. Water confined in solutions of biological relevance
  9. Real-time in-situ 1H NMR of reactions in peptide solution: preaggregation of amyloid-β fragments prior to fibril formation
  10. Free energy profile of permeation of Entecavir through Hepatitis B virus capsid studied by molecular dynamics calculation
  11. Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions
  12. Excess spectroscopy and its applications in the study of solution chemistry
  13. Structure of aqueous sodium acetate solutions by X-Ray scattering and density functional theory
  14. Desymmetrization in geometry optimization: application to an ab initio study of copper(I) hydration
  15. Interactions between adsorbents and adsorbates in aqueous solutions
  16. Modeling vapor-liquid-liquid-solid equilibrium for acetone-water-salt system
  17. Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study
  18. Extraction of various metal ions by open-chain crown ether bridged diphosphates in supercritical carbon dioxide
  19. Solvation heterogeneity in ionic liquids as demonstrated by photo-chemical reactions
  20. The structure and composition of solid complexes comprising of Nd(III), Ca(II) and D-gluconate isolated from solutions relevant to radioactive waste disposal
  21. Separation of phenols from oils using deep eutectic solvents and ionic liquids
Heruntergeladen am 6.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2019-1119/html
Button zum nach oben scrollen