Startseite Mathematik Some new characterizations of weights for hardy-type inequalities with kernels on time scales
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some new characterizations of weights for hardy-type inequalities with kernels on time scales

  • Ahmed I. Saied , Irena Jadlovská und Mario Krnić EMAIL logo
Veröffentlicht/Copyright: 24. Oktober 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we present novel characterizations of weight functions for Hardy-type dynamic inequalities involving kernels on an arbitrary time scale 𝕋. We establish both necessary and sufficient conditions for a specific class of kernels. As a special case, when 𝕋 = ℕ, our results reduce to the classical discrete inequalities proved by Okpoti et al., while in the continuous case 𝕋 = ℝ, the resulting inequalities are essentially new.


This paper is funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I03-03-V02-00040 and the Slovak Research and Development Agency under the Contract no. VV-MVP-24-0424. In addition, research of the third author was partially supported by the Institutional project RePowerFER through the Recovery and Resilience plan for Croatia (source 581).


  1. (Communicated by Marek Balcerzak)

References

[1] Agarwal, R. P.—O’Regan, D.—Saker, S. H.: Hardy Type Inequalities on Time Scales, Springer, Cham, 2016.10.1007/978-3-319-44299-0Suche in Google Scholar

[2] Aly, E. S.—Mahnashi, A. M.—Zaagan, A. A.—Ibedou, I.—Saied, A. I.—Mohammed, W. W.: N-dimension for dynamic generalized inequalities of Hölder and Minkowski type on diamond alpha time scales, AIMS Mathematics 9(4) (2024), 9329–9347.10.3934/math.2024454Suche in Google Scholar

[3] Aly, E. S.—Saied, A. I.—Ibedou, I.—Algolam, M. S.—Mohammed, W. W.: Some new generalizations of reversed Minkowski’s inequality for several functions via time scales, AIMS Mathematics 9(5) (2024), 11156–11179.10.3934/math.2024547Suche in Google Scholar

[4] Arino, M. A.—Muckenhoupt, B.: Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320(2) (1990), 727–735.10.1090/S0002-9947-1990-0989570-0Suche in Google Scholar

[5] Awwad, E.—Saied, A. I.: Some new multidimensional Hardy-type inequalities with general kernels on time scales, J. Math. Inequal. 16(1) (2022), 393–412.10.7153/jmi-2022-16-29Suche in Google Scholar

[6] Awwad, E.—Saied, A. I.: Some weighted dynamic inequalities of Hardy type with kernels on time scales nabla calculus, J. Math. Inequal. 18(2) (2024), 457–475.10.7153/jmi-2024-18-25Suche in Google Scholar

[7] Bennett, G.—Grosse-Erdmann, K.-G.: Weighted Hardy inequalities for decreasing sequences and functions, Math. Ann. 334(3) (2006), 489–531.10.1007/s00208-005-0678-7Suche in Google Scholar

[8] Bibi, R.—Bohner, M.—Pečarić, J.—Varošanec, S.: Minkowski and Beckenbach-Dresher inequalities and functionals on time scales, J. Math. Inequal. 7(3) (2013), 299–312.10.7153/jmi-07-28Suche in Google Scholar

[9] Bohner, M.—Peterson, A.: Dynamic Equations on Time Scales. An Introduction with Applications, Birkhäuser Boston, Inc. Boston, MA, 2001.10.1007/978-1-4612-0201-1Suche in Google Scholar

[10] Bradley, J. S.: Hardy inequalities with mixed norms, Canad. Math. Bull. 21(4) (1978), 405–408.10.4153/CMB-1978-071-7Suche in Google Scholar

[11] Gao, P.: On weighted Hardy inequalities for non-increasing sequences, J. Math. Inequal. 12(2) (2018), 551–557.10.7153/jmi-2018-12-41Suche in Google Scholar

[12] Hardy, G. H.: Note on a theorem of Hilbert, Math. Z. 6(3–4) (1920), 314–317.10.1007/BF01199965Suche in Google Scholar

[13] Hardy, G. H.: Notes on some points in the integral calculus, Messenger of Mathematics 57 (1928), 12–16.Suche in Google Scholar

[14] Hilger, S.: Analysis on measure chains—An unified approach to continuous and discrete calculus, Results Math. 18(1–2) (1990), 18–56.10.1007/BF03323153Suche in Google Scholar

[15] Oguntuase, J. A.—Persson, L.-E.: Time scales Hardy-type inequalities via superquadracity, Ann. Funct. Anal. 5(2) (2014), 61–73.10.15352/afa/1396833503Suche in Google Scholar

[16] Okpoti, C. A.—Perrsson, L.-E.—Wedestig, A.: Weight characterizations for the discrete Hardy inequality with kernel, J. Inequal. Appl. 2006 (2016), Art. ID 18030.10.1155/JIA/2006/18030Suche in Google Scholar

[17] Řehák, P.: Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl. 2005 (2005), Art. ID 942973.10.1155/JIA.2005.495Suche in Google Scholar

[18] Saied, A. I.: A study on reversed dynamic inequalities of Hilbert-type on time scales nabla calculus, J. Inequal. Appl. 2024 (2024), Art ID 75.10.1186/s13660-024-03091-8Suche in Google Scholar

[19] Saker, S. H.—O’Regan, D.—Agarwal, R.: Generalized Hardy, Copson, Leindler and Bennett inequalities on time scales, Math. Nachr. 287(5–6) (2014), 686–698.10.1002/mana.201300010Suche in Google Scholar

[20] Saker, S. H.—Awwad, E.—Saied, A.: Some new dynamic inequalities involving monotonic functions on time scales, J. Funct. Spaces 2019 (2019), Art. ID 7584836.10.1155/2019/7584836Suche in Google Scholar

[21] Saker, S. H.—Saied, A. I.—Krnić, M.: Some new weighted dynamic inequalities for monotone functions involving kernels, Mediterr. J. Math. 17(2) (2020), Art. No. 39.10.1007/s00009-020-1473-0Suche in Google Scholar

[22] Saker, S. H.—Alzabut, J.—Saied, A. I.—O’Regan, D.: New characterizations of weights on dynamic inequalities involving a Hardy operator, J. Inequal. Appl. Art. 2021 (2021), Art. ID 73.10.1186/s13660-021-02606-xSuche in Google Scholar

Received: 2025-02-02
Accepted: 2025-04-24
Published Online: 2025-10-24
Published in Print: 2025-10-27

© 2025 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Copies of monomorphic structures
  2. Endomorphism kernel property for extraspecial and special groups
  3. Sums of Tribonacci numbers close to powers of 2
  4. Multiplicative functions k-additive on hexagonal numbers
  5. Monogenic even cyclic sextic polynomials
  6. Elegant proofs for properties of normalized remainders of Maclaurin power series expansion of exponential function
  7. Degree of independence in non-archimedean fields
  8. Remarks on some one-ended groups
  9. Some new characterizations of weights for hardy-type inequalities with kernels on time scales
  10. Inequalities for Riemann–Liouville fractional integrals in co-ordinated convex functions: A Newton-type approach
  11. Radius estimates for functions in the class 𝒰r(λ)
  12. Sharp bounds on the logarithmic coefficients of inverse functions for certain classes of univalent functions
  13. More q-congruences from Singh’s quadratic transformation
  14. Stability and controllability of cycled dynamical systems
  15. Existence, uniqueness, and multiplicity of radially symmetric k-admissible solutions for k-hessian equations
  16. Strong solution of a Navier-Stokes-Cahn-Hilliard system for incompressible two-phase flows with surfactant
  17. Coincidence points via tri-simulation functions with an application in integral equations
  18. On Fong-Tsui conjecture and binormality of operators
  19. Riemannian maps of CR-submanifolds of Kaehler manifolds
  20. On structural numbers of topological spaces
  21. The κ-Fréchet-Urysohn property for Cp(X) is equivalent to baireness of B1(X)
  22. Weighted pseudo S-asymptotically (ω, c)-periodic solutions to fractional stochastic differential equations
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0079/html
Button zum nach oben scrollen