Startseite Mathematik Existence, uniqueness, and multiplicity of radially symmetric k-admissible solutions for k-hessian equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence, uniqueness, and multiplicity of radially symmetric k-admissible solutions for k-hessian equations

  • Zhiqian He EMAIL logo und Liangying Miao
Veröffentlicht/Copyright: 24. Oktober 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper investigates the existence, uniqueness, and multiplicity of radially symmetric k-admissible solutions for the k-Hessian equation subject to a homogeneous Dirichlet boundary condition:

(P) S k ( D 2 u ) = λ k f ( u ) in B , u = 0 on B ,

where B = {x ∈ ℝn: ∣x∣ < 1}, λ is a positive parameter, k ∈ {1, …, n}, f: [0, ∞) → [0, ∞) is continuous. In contrast to previous studies, our main results are established under the essential condition that the radially symmetric k-admissible solutions of (P) are generically non-convex. The main tool is the fixed point theorem in cones.

Funding statement: This work was supported by the National Natural Science Foundation of China (Nos.12461035, 12301631), Applied Basic Research Project of Qinghai Province (2025-ZJ-722).

Acknowledgement

The authors are very grateful to the anonymous referees for their valuable suggestions.

  1. (Communicated by Michal Fečkan)

References

[1] Andrews, B.: Gauss curvature flow: The fate of the rolling stones, Invent. Math. 138 (1999), 151–161.10.1007/s002220050344Suche in Google Scholar

[2] Bai, Z. B.—Yang, Z. D.: Existence of k-convex solutions for the k-Hessian equation, Mediterr. J. Math. 20 (2023), Art. No. 150.10.1007/s00009-023-02364-8Suche in Google Scholar

[3] Caffarelli, L. A.—Milman, M.: Monge-Ampère equation: Applications to Geometry and Optimization, Amer. Math. Soc., Providence, RI, 1999.10.1090/conm/226Suche in Google Scholar

[4] Dai, G. W.—Ma, R. Y.: Eigenvalue, bifurcation and convex solutions for Monge-Ampère equations, Topol. Methods Nonlinear Anal. 46 (2015), 135–163.10.12775/TMNA.2015.041Suche in Google Scholar

[5] Dai, G. W.: Bifurcation and admissible solutions for the Hessian equation, J. Funct. Anal. 273 (2017), 3200–3240.10.1016/j.jfa.2017.08.001Suche in Google Scholar

[6] Deimling, K.: Nonlinear Functional Analysis, Springer, Berlin, 1985.10.1007/978-3-662-00547-7Suche in Google Scholar

[7] Erbe, L. H.—Hu, S. C.—Wang, H. Y.: Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl. 184 (1994), 640–648.10.1006/jmaa.1994.1227Suche in Google Scholar

[8] Guan, P.—Wang, X.J.: On a Monge-Ampère equation arising in geometric optics, J. Differential Geometry 48 (1998), 205–223.10.4310/jdg/1214460795Suche in Google Scholar

[9] Hassine, K.: Existence and uniqueness of radial solutions for Hardy-Hénon equations involving k-Hessian operators, Commun. Pure Appl. Anal. 21 (2022), 2965–2979.10.3934/cpaa.2022084Suche in Google Scholar

[10] He, X. Y.—Gao, C. H.—Wang, J. J.: k-convex solutions for multiparameter Dirichlet systems with k-Hessian operator and Lane-Emden type nonlinearities, Adv. Nonlinear Anal. 13 (2024), Art. ID 20230136.10.1515/anona-2023-0136Suche in Google Scholar

[11] He, Z. Q.—Miao, L. Y.: Existence and multiplicity of radially symmetric k-admissible solutions for Dirichlet problem of k-Hessian equations, Math. Slovaca 72 (2022), 111–120.10.1515/ms-2022-0008Suche in Google Scholar

[12] Hu, S. C.—Wang, H. Y.: Convex Solutions of boundary value problems arising from Monge-Ampère equation, Discret. Contin. Dyn. Syst. 16 (2006), 705–720.10.3934/dcds.2006.16.705Suche in Google Scholar

[13] Jacobsen, J.: A Liouville-Gelfand equation for k-Hessian operators, Rocky Mountain J. Math. 34 (2004), 665–683.10.1216/rmjm/1181069873Suche in Google Scholar

[14] Ma, R. Y.—Gao, H. L.: Positive convex solutions of boundary value problems arising from Monge-Ampère equations, Appl. Math. Comput. 259 (2015), 390–402.10.1016/j.amc.2015.03.005Suche in Google Scholar

[15] Ma, R. Y.—He, Z. Q.—Yan, D. L.: Three radially symmetric k-admissible solutions for k-Hessian equation, Complex Var. Elliptic Equ. 64 (2019), 1353–1363.10.1080/17476933.2018.1536706Suche in Google Scholar

[16] Sánchez, J.—Vergara, V.: Bounded solutions of a k-Hessian equation in a ball, J. Differential Equations 261 (2016), 797–820.10.1016/j.jde.2016.03.021Suche in Google Scholar

[17] Wang, H. Y.: Convex solutions of boundary value problems, J. Math. Anal. Appl. 318 (2006), 246–252.10.1016/j.jmaa.2005.05.067Suche in Google Scholar

[18] Wei, W.: Uniqueness theorems for negative radial solutions of k-Hessian equations in a ball, J. Differential Equations 261 (2016), 3756–3771.10.1016/j.jde.2016.06.004Suche in Google Scholar

[19] Wei, W.: Existence and multiplicity for negative solutions of k-Hessian equations, J. Differential Equations 263 (2017), 615–640.10.1016/j.jde.2017.02.049Suche in Google Scholar

[20] Wang, X. J.: A class of fully nonlinear elliptic equations and related functionals, Indiana Univ. Math. J. 43 (1994), 25–54.10.1512/iumj.1994.43.43002Suche in Google Scholar

[21] Zhang, X. G.—Chen, P.—Wu, Y. H.—Wiwatanapataphee, B.: The iterative properties of solutions for a singular k-Hessian system, Nonlinear Anal. Model. Control 29 (2024), 146–165.10.15388/namc.2024.24.33824Suche in Google Scholar

Received: 2025-03-18
Accepted: 2025-04-27
Published Online: 2025-10-24
Published in Print: 2025-10-27

© 2025 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Copies of monomorphic structures
  2. Endomorphism kernel property for extraspecial and special groups
  3. Sums of Tribonacci numbers close to powers of 2
  4. Multiplicative functions k-additive on hexagonal numbers
  5. Monogenic even cyclic sextic polynomials
  6. Elegant proofs for properties of normalized remainders of Maclaurin power series expansion of exponential function
  7. Degree of independence in non-archimedean fields
  8. Remarks on some one-ended groups
  9. Some new characterizations of weights for hardy-type inequalities with kernels on time scales
  10. Inequalities for Riemann–Liouville fractional integrals in co-ordinated convex functions: A Newton-type approach
  11. Radius estimates for functions in the class 𝒰r(λ)
  12. Sharp bounds on the logarithmic coefficients of inverse functions for certain classes of univalent functions
  13. More q-congruences from Singh’s quadratic transformation
  14. Stability and controllability of cycled dynamical systems
  15. Existence, uniqueness, and multiplicity of radially symmetric k-admissible solutions for k-hessian equations
  16. Strong solution of a Navier-Stokes-Cahn-Hilliard system for incompressible two-phase flows with surfactant
  17. Coincidence points via tri-simulation functions with an application in integral equations
  18. On Fong-Tsui conjecture and binormality of operators
  19. Riemannian maps of CR-submanifolds of Kaehler manifolds
  20. On structural numbers of topological spaces
  21. The κ-Fréchet-Urysohn property for Cp(X) is equivalent to baireness of B1(X)
  22. Weighted pseudo S-asymptotically (ω, c)-periodic solutions to fractional stochastic differential equations
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0085/html
Button zum nach oben scrollen