Startseite Mathematik Sharp bounds on the logarithmic coefficients of inverse functions for certain classes of univalent functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sharp bounds on the logarithmic coefficients of inverse functions for certain classes of univalent functions

  • Sanju Mandal , Molla Basir Ahamed und Paweł Zaprawa EMAIL logo
Veröffentlicht/Copyright: 24. Oktober 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This article aims to determine the sharp bounds for the logarithmic coefficients of inverse functions in several classes of univalent functions. We obtain the sharp bounds of logarithmic coefficients Γ1, Γ2 and Γ3 of the inverse functions for the classes of starlike and convex functions with respect to symmetric points respectively. In addition, we establish sharp inequalities for the second Hankel determinant H2,1Ff1/23/44 and H2,1Ff1/223/3264 of logarithmic coefficients of the inverse functions for starlike and convex functions associated with a lune region, where f1 is the inverse function of f.


All authors actively worked on the research contained in the paper. All authors reviewed the manuscript.


Funding statement: The first named author is supported by CSIR-SRF (File No: 09/0096(12546)/2021-EMR-I, dated: 08/10/2024), Govt. of India, New Delhi. The second named author is supported by SERB, SUR/2022/002244, Govt. India.

Acknowledgement

The authors are grateful to the referees for their constructive suggestions and comments which have improved the quality of the paper.

  1. (Communicated by Marek Balcerzak)

References

[1] Ali, M. F.—Allu, V.: On logarithmic coefficients of some close-to-convex functions, Proc. Amer. Math. Soc. 146 (2018), 1131–1142.10.1090/proc/13817Suche in Google Scholar

[2] Allu, V.—Arora, V.—Shaji, A.: On the Second Hankel determinant of logarithmic coefficients for certain univalent functions, Mediterr. J. Math. 20 (2023), Art. No. 81.10.1007/s00009-023-02272-xSuche in Google Scholar

[3] Branges, L. De: A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137–152.10.1007/BF02392821Suche in Google Scholar

[4] Caratháodory, C.: Über den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), 95–115.10.1007/BF01449883Suche in Google Scholar

[5] Cho, N. E.—Kim, Y. C.—Sugawa, T.: A general approach to the Fekete-Szego problem, J. Math. Soc. Japan. 59 (2007), 707–727.10.2969/jmsj/05930707Suche in Google Scholar

[6] Cho, N. E.—Kowalczyk, B.—Kwon, O. S.—Lecko, A.—Sim, Y. J.: On the third logarithmic coefficient in some subclasses of close-to-convex functions, Rev. R. Acad. Cienc. Exactas Fı́s. Nat.(Esp.) 114 (2020), Art. No. 52.10.1007/s13398-020-00786-7Suche in Google Scholar

[7] Cho, N. E.—Kowalczyk, B.—Lecko, A.: Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis, Bull. Aust. Math. Soc. 100 (2019), 86–96.10.1017/S0004972718001429Suche in Google Scholar

[8] Duren, P. T.: Univalent Functions, Springer-Verlag, New York Inc, 1983.Suche in Google Scholar

[9] Efraimidis, I.: A generalization of Livingston’s coefficient inequalities for functions with positive real part, J. Math. Anal. Appl. 435 (2016), 369–379.10.1016/j.jmaa.2015.10.050Suche in Google Scholar

[10] Girela, D.: Logarithmic coefficients of univalent functions, Ann. Acad. Sci. Fenn. 25 (2000), 337–350.Suche in Google Scholar

[11] Goodman, A. W.: Univalent Functions, Mariner, Tampa, FL, 1983.Suche in Google Scholar

[12] Keogh, F. R.—Merkes, E. P.: A coefficient inequality for certain classes of analytic functions, Proc. Am. Math. Soc. 20 (1969), 8–12.10.1090/S0002-9939-1969-0232926-9Suche in Google Scholar

[13] Kowalczyk, B.—Lecko, A.: Second Hankel determinant of logarithmic coefficients of convex and starlike functions, Bull. Aust. Math. Soc. 105(3) (2022), 458–467.10.1017/S0004972721000836Suche in Google Scholar

[14] Kowalczyk, B.—Lecko, A.: Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha, Bull. Malays. Math. Sci. Soc. 45(2) (2022), 727–740.10.1007/s40840-021-01217-5Suche in Google Scholar

[15] Kowalczyk, B.—Lecko, A.: The second Hankel determinant of the logarithmic coefficients of strongly starlike and strongly convex functions, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117 (2023), Art. No. 91.10.1007/s13398-023-01427-5Suche in Google Scholar

[16] Kowalczyk, B.—Lecko, A.—Sim, Y. J.: The sharp bound for the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc. 97 (2018), 435–445.10.1017/S0004972717001125Suche in Google Scholar

[17] Libera, R. J.—Zlotkiewicz, E. J.: Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), 225–230.10.1090/S0002-9939-1982-0652447-5Suche in Google Scholar

[18] Libera, R. J.—Zlotkiewicz, E. J.: Coefficient bounds for the inverse of a function with derivatives in P, Proc. Amer. Math. Soc. 87 (1983), 251–257.10.1090/S0002-9939-1983-0681830-8Suche in Google Scholar

[19] Löwner, K.: Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I. Math. Ann. 89 (1923), 103–121.10.1007/BF01448091Suche in Google Scholar

[20] Mandal, S.—Ahamed, M. B.: Second Hankel determinant of logarithmic coefficients of inverse functions in certain classes of univalent functions, Lith. Math. J. 64 (2024), 67–79.10.1007/s10986-024-09623-5Suche in Google Scholar

[21] Mandal, S.—Roy, P. P.—Ahamed, M. B.: Hankel and Toeplitz determinants of logarithmic coefficients of Inverse functions for certain classes of univalent functions, Iran. J. Sci. 49 (2024), 243–252.10.1007/s40995-024-01717-6Suche in Google Scholar

[22] Milin, I. M.: Univalent Functions and Orthonormal Systems, Nauka, Moscow, 1971 (in Russian); Translations of Mathematical Monographs, Vol. 49, AMS, Providence, RI, 1977 (English translation).Suche in Google Scholar

[23] Nezhmetdinov, I. R.—Ponnusamy, S.: On the class of univalent functions starlike with respect to N-symmetric points, Hokkaido Math. J. 31(1) (2002), 61–77.10.14492/hokmj/1350911770Suche in Google Scholar

[24] Ohno, R.—Sugawa, T.: Coefficient estimates of analytic endomorphisms of the unit disk fixing a point with applications to concave functions, Kyoto J. Math. 58 (2018), 227–241.10.1215/21562261-2017-0015Suche in Google Scholar

[25] Ponnusamy, S.—Sharma, N. L.—Wirths, K. J.: Logarithmic coefficients of the inverse of univalent functions, Results Math. 73 (2018), Art. No. 160.10.1007/s00025-018-0921-7Suche in Google Scholar

[26] Ponnusamy, S.—Sugawa, T.: Sharp inequalities for logarithmic coefficients and their applications, Bull. Sci. Math. 166 (2021), Art. No. 23.10.1016/j.bulsci.2020.102931Suche in Google Scholar

[27] Prokhorov, D. V.—Szynal, J.: Inverse coefficients for (α,β) convex functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 35 (1981), 125–143.Suche in Google Scholar

[28] Raina, R. K.—Sharma, P.—Sokół, J.: Certain classes of analytic functions related to the crescent-shaped regions, J. Contemp. Math. Anal. 53 (2018), 355–362.10.3103/S1068362318060067Suche in Google Scholar

[29] Raina, R. K.—Sokół, J.: On coefficient for certain class of starlike functions, Hacet. J. Math. Stat. 44(6) (2015) 1427–1433.10.15672/HJMS.2015449676Suche in Google Scholar

[30] Raina, R. K.—Sokół, J.: Some coefficient properties relating to a certain class of starlike functions, Miskolc Math. Notes 44(6) (2015), 1427–1433.Suche in Google Scholar

[31] Raina, R. K.—Sokół, J.: Some properties related to a certain class of starlike functions, C. R. Math. Acad. Sci. Paris 353(11) (2015), 973–978.10.1016/j.crma.2015.09.011Suche in Google Scholar

[32] Raza, M.—Riaz, A.—Thomas, D. K.: The third Hankel determinant for inverse coefficients of convex functions, Bull. Aust. Math. Soc. 109(1) (2024), 94–100.10.1017/S0004972723000357Suche in Google Scholar

[33] Riaz, A.—Raza, M.: The third Hankel determinant for starlike and convex functions associated with lune, Bull. Sci. Math. 187 (2023), Art. ID 103289.10.1016/j.bulsci.2023.103289Suche in Google Scholar

[34] Roth, O.: A sharp inequality for the logarithmic coefficients of univalent functions, Proc. Amer. Math. Soc. 135 (2007), 2051–2054.10.1090/S0002-9939-07-08660-1Suche in Google Scholar

[35] Sakaguchi, K.: On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72–75.10.2969/jmsj/01110072Suche in Google Scholar

[36] Sharma, P.—Raina, R. K.—Sokół, J.: Certain Ma-Minda type classes of analytic functions associated with the crescent-shaped region, Anal. Math. Phys. 9 (2019), 1–17.10.1007/s13324-019-00285-ySuche in Google Scholar

[37] Srivastava, H. M.—Rath, B.—Kumar, K. S.—Krishna, D. V.: Some sharp bounds of the third-order Hankel determinant for the inverses of the Ozaki type close-to-convex functions, Bull. Sci. Math. 191 (2024), Art. ID 103381.10.1016/j.bulsci.2023.103381Suche in Google Scholar

[38] Sim, Y. J.—Lecko, A.—Thomas, D. K.: The second Hankel determinant for strongly convex and Ozaki close to convex functions, Ann. Mat. Pura Appl. 200(6) (2021), 2515–2533.10.1007/s10231-021-01089-3Suche in Google Scholar

[39] Sümer, S. E.—Lecko, A.—Çeki;ç, B.—Seker, B.: The second Hankel determinant of logarithmic coefficients for strongly Ozaki close-to-convex functions, Bull. Malays. Math. Sci. Soc. 46(2023), Art. No. 183.10.1007/s40840-023-01580-5Suche in Google Scholar

[40] Thomas, D. K.: On logarithmic coefficients of close to convex functions, Proc. Amer. Math. Soc. 144 (2016), 1681–1687.10.1090/proc/12921Suche in Google Scholar

[41] Thomas, D. K.—Tuneski, N.—Allu, V.: Univalent Functions: A Primer, De Gruyter Studies in Mathematics, Vol. 69., De Gruyter, Berlin, 2018.10.1515/9783110560961Suche in Google Scholar

[42] Ye, K.—Lim, L. H.: Every matrix is a product of Toeplitz matrices, Found. Comput. Math. 16(3) (2016), 577–598.10.1007/s10208-015-9254-zSuche in Google Scholar

[43] Zaprawa, P.: Initial logarithmic coefficients for functions starlike with respect to symmetric points, Bol. Soc. Mat. Mex. 27 (2021), Art. No. 62.10.1007/s40590-021-00370-ySuche in Google Scholar

[44] Zaprawa, P.: Hankel determinant H2,3 for starlike and convex functions, Bull. Sci. Math. 194 (2024), Art. ID 103459.10.1016/j.bulsci.2024.103459Suche in Google Scholar

Received: 2024-11-18
Accepted: 2025-06-14
Published Online: 2025-10-24
Published in Print: 2025-10-27

© 2025 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Copies of monomorphic structures
  2. Endomorphism kernel property for extraspecial and special groups
  3. Sums of Tribonacci numbers close to powers of 2
  4. Multiplicative functions k-additive on hexagonal numbers
  5. Monogenic even cyclic sextic polynomials
  6. Elegant proofs for properties of normalized remainders of Maclaurin power series expansion of exponential function
  7. Degree of independence in non-archimedean fields
  8. Remarks on some one-ended groups
  9. Some new characterizations of weights for hardy-type inequalities with kernels on time scales
  10. Inequalities for Riemann–Liouville fractional integrals in co-ordinated convex functions: A Newton-type approach
  11. Radius estimates for functions in the class 𝒰r(λ)
  12. Sharp bounds on the logarithmic coefficients of inverse functions for certain classes of univalent functions
  13. More q-congruences from Singh’s quadratic transformation
  14. Stability and controllability of cycled dynamical systems
  15. Existence, uniqueness, and multiplicity of radially symmetric k-admissible solutions for k-hessian equations
  16. Strong solution of a Navier-Stokes-Cahn-Hilliard system for incompressible two-phase flows with surfactant
  17. Coincidence points via tri-simulation functions with an application in integral equations
  18. On Fong-Tsui conjecture and binormality of operators
  19. Riemannian maps of CR-submanifolds of Kaehler manifolds
  20. On structural numbers of topological spaces
  21. The κ-Fréchet-Urysohn property for Cp(X) is equivalent to baireness of B1(X)
  22. Weighted pseudo S-asymptotically (ω, c)-periodic solutions to fractional stochastic differential equations
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0082/html
Button zum nach oben scrollen