Startseite Operator Bohr-type inequalities
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Operator Bohr-type inequalities

  • Mohammad Sababheh EMAIL logo , Cristian Conde und Hamid Reza Moradi
Veröffentlicht/Copyright: 24. Mai 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The classical Bohr inequality for scalars was extended to the non-commutative case of Hilbert space operators in the literature. The sole goal of this article is to discuss the operator Bohr inequality and present some of its new variants. This includes fresh reverses and refinements of this inequality with applications towards an operator’s real and imaginary parts, not to forget the new discussion of different domains of the parameters. One further application towards the operator Dunkl-Williams inequality will be presented too. While the new results are interesting, we emphasize that the approach used to explore these inequalities differs from the existing literature methods for this context.

  1. Communicated by Emanuel Chetcuti

References

[1] Archbold, J. W.: Algebra, Pitman, London, 1958.Suche in Google Scholar

[2] Beiranvand, A.—Ghazanfari, A.: Improved Young and Heinz operator inequalities for unitarily invariant norms, Math. Slovaca 70(2) (2020), 453–466.10.1515/ms-2017-0363Suche in Google Scholar

[3] Bergström, H.: A triangle-inequality for matrices. In: Den 11-te Skandinaviske Matematikerkongress, Trondheim 1949, Oslo, 1952, pp. 264–267.Suche in Google Scholar

[4] Bohr, H.: Zur Theorie der Fastperiodischen Funktionen I, Acta Math. 45 (1924), 29–127.10.1007/BF02395468Suche in Google Scholar

[5] Chansangiam, P.—Hemchote, P.—Pantaragphong, P.: Generalizations of Bohr inequality for Hilbert space operators, J. Math. Anal. Appl. 356(2) (2009), 525–536.10.1016/j.jmaa.2009.03.006Suche in Google Scholar

[6] Cheung, W.-S.—Pečarić, J.: Bohr’s inequalities for Hilbert space operators, J. Math. Anal. Appl. 323 (2006), 403–412.10.1016/j.jmaa.2005.10.046Suche in Google Scholar

[7] Clarkson, J. A.: Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414.10.1090/S0002-9947-1936-1501880-4Suche in Google Scholar

[8] Dragomir, S.: On Jensen’s additive inequality for positive convex functions of selfadjoint operators in Hilbert spaces, Jordan J. Math. Stat. 12(4) (2020), 601–623.Suche in Google Scholar

[9] Dunkl, C. F.—Williams, K. S.: A simple norm inequality, Amer. Math. Monthly 71 (1964), 53–54.10.2307/2311304Suche in Google Scholar

[10] Hashemi, F.—Farokhinia, A.: Improved Bellman and Aczel inequalities for operators, Rocky Mountain J. Math. 49(7) (2019), 2175–2183.10.1216/RMJ-2019-49-7-2175Suche in Google Scholar

[11] Hirzallah, O.: Non-commutative operator Bohr inequality, J. Math. Anal. Appl. 282 (2003), 578–583.10.1016/S0022-247X(03)00185-9Suche in Google Scholar

[12] Karamali, G.—Moradi, H. R.—Sababheh, M.: More about operator order preserving, Rocky Mountain J. Math. 51(5) (2021), 1691–1699.10.1216/rmj.2021.51.1691Suche in Google Scholar

[13] Kato, T.: Notes on some inequalities for linear operators, Math. Ann. 125 (1952), 208–212.10.1007/BF01343117Suche in Google Scholar

[14] Lauric, V.: The trace of the commutator of the Cesàro operator and a compact operator, Math. Slovaca 70(1) (2020), 147–150.10.1515/ms-2017-0339Suche in Google Scholar

[15] Mąkowski, A.: Bol. Mat. 34 (1961), 1–11.Suche in Google Scholar

[16] Marghzar, S.—Rahpeyma, O.—Bagha, D.: Some inequalities for operator (φ, h)-convex functions, Rocky mountain J. Math. 51(6) (2021), 2019–2029.10.1216/rmj.2021.51.2019Suche in Google Scholar

[17] Mitrinović, D. S.: Analytic Inequalities, Springer-Verlag, NewYork, 1970.10.1007/978-3-642-99970-3Suche in Google Scholar

[18] Mitrinović, D. S.—Pečarić, J. E.—Fink, A. M.: Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.10.1007/978-94-017-1043-5Suche in Google Scholar

[19] Moradi, H. R.—Heydarbeygi, Z.—Sababheh, M.: Revisiting the Grüss inequality, Oper. Matrices 15(4) (2021), 1379–1392.10.7153/oam-2021-15-86Suche in Google Scholar

[20] Pečarić, J. E.—Rajić, R.: Inequalities of the Dunkl–Williams type for absolute value operators, J. Math. Inequal. 4(1) (2010), 1–10.10.7153/jmi-04-01Suche in Google Scholar

[21] Sababheh, M.—Moradi, H. R.—Heydarbeygi, Z.: Buzano, Kréın and Cauchy-Schwarz inequalities, Oper. Matrices 16(1) (2022), 239–250.10.7153/oam-2022-16-19Suche in Google Scholar

[22] Sababheh, M.—Furuichi, S.—Heydarbeygi, Z.—Moradi, H. R.: On the arithmetic-geometric mean inequality, J. Math. Inequal. 15(3) (2021), 1255–1266.10.7153/jmi-2021-15-84Suche in Google Scholar

[23] Wang, P.—Liu, Z.: Multiple weighted norm inequalities for commutators of multilinear Calderón-Zygmund and potential type operators, Jordan J. Math. Stat. 11(3) (2018), 211–228.Suche in Google Scholar

[24] Zhang, F.: On the Bohr inequality of operators, J. Math. Anal. Appl. 333 (2007), 1264–1271.10.1016/j.jmaa.2006.12.024Suche in Google Scholar

Received: 2023-03-03
Accepted: 2023-06-14
Published Online: 2024-05-24
Published in Print: 2024-04-25

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0035/html
Button zum nach oben scrollen