Abstract
In this paper, bounds of some divergence measures on time scales via Abel–Gontscharoff interpolation are construed. Inequalities involving Shannon entropy, Kullback–Leibler discrimination, triangle distance and Jeffrey distance, are studied as particular instances by using various types of convex functions. Several new bounds of certain divergence measures for some specified time scales are also discussed.
Acknowledgement
The authors wish to thanks the anonymous referees for their very careful reading of the manuscript and fruitful comments.
-
Communicated by Gejza Wimmer
References
[1] Ansari, I.—Khan, K. A.—Nosheen, A.—Pečarić, Đ.—Pečarić, J.: Shannon type inequalities via time scales theory, Adv. Difference Equ. 2020 (2020), Art. No. 135.10.1186/s13662-020-02587-zSuche in Google Scholar
[2] Ansari, I.—Khan, K. A.—Nosheen, A.—Pečarić, Đ.—Pečarić, J.: Estimation of divergence measures on time scales via Taylor’s polynomial and Green’s function with applications in q-calculus, Adv. Difference Equ. 2021 (2021), Art. No. 374.10.1186/s13662-021-03528-0Suche in Google Scholar
[3] Agarwal, R. P.—Wong P. J. Y.: Error Inequalities in Polynomial Interpolation and their Applications, Kluwer Academic Publishers, Dordrecht, 1993.10.1007/978-94-011-2026-5Suche in Google Scholar
[4] Ansari, I.—Khan, K. A.—Nosheen, A.—Pečarić, Đ.—Pečarić, J.: Some inequalities for Csiszár divergence via theory of time scales, Adv. Difference Equ. 2020 (2020), Art. No. 698.10.1186/s13662-020-03159-xSuche in Google Scholar
[5] Ansari, I.—Khan, K. A.—Nosheen, A.—Pečarić, Đ.—Pečarić, J.: Estimation of divergences on time scales via Green function and Fink’s identity, Adv. Difference Equ. 2021 (2021), Art. No. 394.10.1186/s13662-021-03550-2Suche in Google Scholar
[6] Ansari, I.—Khan, K. A.—Nosheen, A.—Pečarić, Đ.—Pečarić, J.: Estimation of entropies on time scales by Lidstone’s interpolation using Csiszár-type functional, Hacet. J. Math. Stat. 51(3) (2022), 817–833.10.15672/hujms.971154Suche in Google Scholar
[7] Ansari, I.—Khan, K. A.—Nosheen, A.—Pečarić, Đ.—Pečarić, J.: New entropic bounds on time scales via Hermite interpolating polynomial, J. Inequal. Appl. 2021 (2021), Art. No. 195.10.1186/s13660-021-02730-8Suche in Google Scholar
[8] Bibi, F.—Bibi, R.—Nosheen, A.—Pečarić, J.: Extended Jensen’s functional for diamond integral via Green’s function and Hermite polynomial, J. Inequal. Appl. 2022 (2022), Art. No. 50.10.1186/s13660-022-02785-1Suche in Google Scholar
[9] Bohner, M.—Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston Inc., Boston, 2001.10.1007/978-1-4612-0201-1Suche in Google Scholar
[10] Bohner, M.—Peterson, A.: Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.10.1007/978-0-8176-8230-9Suche in Google Scholar
[11] Butt, S. I.—Khan, K. A.—Pečarić, J.: Generalization of Popoviciu inequality for higher order convex function via Taylor’s polynomial, Acta Univ. Apulensis 42 (2015), 181–200.10.17114/j.aua.2015.42.12Suche in Google Scholar
[12] Butt, S. I.—Khan, K. A.—Pečarić, J.: Generalization of Popoviciu type inequalities via Green function and Abel—Gontscharoff interpolating polynomial, J. Math. Comput. Sci. 7 (2017), 211–229.Suche in Google Scholar
[13] Brito da Cruz, A. M. C.—Martins, N.—Torres, D. F. M.: Symmetric differentiation on time scales, Appl. Math. Lett. 26(2) (2013), 264–269.10.1016/j.aml.2012.09.005Suche in Google Scholar
[14] Brito da Cruz, A. M. C.—Martins, N.—Torres, D. F. M.: The diamond integrals on time scales, Bull. Malays. Math. Sci. Soc. 38 (2015), 1453–1462.10.1007/s40840-014-0096-7Suche in Google Scholar
[15] Brigo, D.—Mercurio, F.: Discrete time vs continuous time stock-price dynamics and implications for option pricing, Finance Stoch. 4 (2000), 147–159.10.1007/s007800050009Suche in Google Scholar
[16] Bilal, M.—Khan, K. A.—Nosheen, A.—Pečarić, J.: Generalization of some bounds containing entropies on time scales, Qual. Theory Dyn. Syst. 22 (2023), Art. No. 71.10.1007/s12346-023-00768-1Suche in Google Scholar
[17] Bilal, M.—Khan, K. A.—Nosheen, A.—Pečarić, J.: Generalizations of Shannon type inequalities via diamond integrals on time scales, J. Inequal. Appl. 2023 (2023), Art. No. 24.10.1186/s13660-023-02930-4Suche in Google Scholar
[18] Bilal, M.—Khan, K. A.—Ahmad, H.—Nosheen, A.—Awan, K. M.—Askar, S.—Alharthi, M.: Some dynamic inequalities via diamond integrals for function of several variables, Fractal Fract. 207 (2021).10.3390/fractalfract5040207Suche in Google Scholar
[19] Davis, P. J.: Interpolation and Approximation, Blaisdell, Boston, 1961.Suche in Google Scholar
[20] Dragomir, S. S.: Other Inequalities for Csiszár Divergence and Applications, preprint; RGMIA Res. Rep. Coll. (2000).Suche in Google Scholar
[21] Gontscharoff, V. L.: Theory of Interpolation and Approximation of Functions, Gostekhizdat, Moscow, 1954.Suche in Google Scholar
[22] Gibbs, A. L.: On choosing and boundary probability metrics, Int. Stat. Rev. 70 (2002), 419–435.10.1111/j.1751-5823.2002.tb00178.xSuche in Google Scholar
[23] Khan, K. A.—Niaz, T.—Pečarić, J.: On generalization of refinement of Jensen’s inequality using Fink’s identity and Abel—Gontscharoff Green function, J. Inequal. Appl. 2017 (2017), Art. No. 254.10.1186/s13660-017-1521-xSuche in Google Scholar PubMed PubMed Central
[24] Khan, A. R.—Pečarić, J.—Rodić Lipanović, M.: n-Exponential convexity for Jensen-type inequalities, J. Math. Inequal. 7 (2013), 313–335.10.7153/jmi-07-29Suche in Google Scholar
[25] Khan, K. A.—Niaz, T.—Pečarić, Đ.—Pečarić, J.: Refinement of Jensen’s inequality and estimation of f- and Rényi divergence via Montgomery identity, J. Inequal. Appl. 2018 (2018), Art. No. 318.10.1186/s13660-018-1902-9Suche in Google Scholar PubMed PubMed Central
[26] Kac, V.—Cheung, P.: Quantum Calculus, Universitext, Springer, New York, 2002.10.1007/978-1-4613-0071-7Suche in Google Scholar
[27] Latif, N.—Siddique, N.—Pečarić, J.: Generalization of majorization theorem II, J. Math. Inequal. 12(3) (2018), 731-752.10.7153/jmi-2018-12-56Suche in Google Scholar
[28] Liese, F.—Vajda, I.: Convex Statistical Distances, Teubner-Texte Zur Mathematik, Vol. 95, 1987.Suche in Google Scholar
[29] Matic, M.—Pearce, C. E.—Pečarić, J.: Shannon’s and related inequalities in information theory. In: Survey on Classical Inequalities, Springer, Dordrecht, 2000, pp. 127-164.10.1007/978-94-011-4339-4_5Suche in Google Scholar
[30] Niculescu, C. P.—Persson, L.-E.: Convex Functions and their Applications. A Contemporary Aproach. CMS Books in Mathematics, Vol. 23, Springer-Verlag, New York, 2006.10.1007/0-387-31077-0Suche in Google Scholar
[31] Nosheen, A.—Bibi, R.—Pečarić, J.: Jensen-Steffensen inequality for diamond integrals, its converse and improvements via Green function and Taylor’s formula, Aequationes Math. 92(2) (2018), 289–309.10.1007/s00010-017-0527-2Suche in Google Scholar
[32] Pečarić, J.—Perić, I.—Rodić Lipanović, M.: Uniform treatment of Jensen type inequalities, Math. Rep. 16 (2014), 183–205.Suche in Google Scholar
[33] Pečarić, J. E.—Proschan, F.—Tong, Y. L.: Convex Functions, Partial Orderings, and Statistical Applications. Mathematics in Science and Engineering, Vol. 187, Academic Press Inc., Boston, MA, 1992.Suche in Google Scholar
[34] Pečarić, J.—Praljak, M.—Witkowski, A.: Linear operator inequality for n-convex functions at a point, Math. Inequal. Appl. 18 (2015), 1201–1217.10.7153/mia-18-93Suche in Google Scholar
[35] Rogers, J. W.—Sheng, Q.: Notes on the diamond-α dynamic derivative on time scales, J. Math. Anal. Appl. 326(1) (2007), 228–241.10.1016/j.jmaa.2006.03.004Suche in Google Scholar
[36] Sason, I.—Verdú, S.: f-divergence inequalities, IEEE Trans. Inform. Theory 62 (2016), 5973–6006.10.1109/TIT.2016.2603151Suche in Google Scholar
[37] Smoljak Kalamir, K.: New diamond-α Steffensen-type inequalities for convex functions over general time scale measure spaces, Axioms 11 (2022), Art. No. 323.10.3390/axioms11070323Suche in Google Scholar
[38] Tisdell, C. C.—Zaidi, A.: Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling, Nonlinear Anal. 68 (2008), 4–24.10.1016/j.na.2007.03.043Suche in Google Scholar
[39] Vajda, I.: Theory of Statistical Inference and Information, Kluwer, Dordrecht, 1989.Suche in Google Scholar
[40] Whittaker, J. M.: Interpolation Function Theory, Cambridge, 1935.Suche in Google Scholar
[41] Widder, D. V.: Completely convex function and Lidstone series, Trans. Amer. Math. Soc. 51 (1942), 387–398.10.1090/S0002-9947-1942-0006356-4Suche in Google Scholar
© 2024 Mathematical Institute Slovak Academy of Sciences
Artikel in diesem Heft
- Right algebras in Sup and the topological representation of semi-unital and semi-integral quantales, revisited
- Topological representation of some lattices
- Exact-m-majority terms
- Polynomials whose coefficients are generalized Leonardo numbers
- A study on error bounds for Newton-type inequalities in conformable fractional integrals
- Improved conditions for the distributivity of the product for σ-algebras with respect to the intersection
- Close-to-convex functions associated with a rational function
- Complete monotonicity for a ratio of finitely many gamma functions
- Class of bounds of the generalized Volterra functions
- Some new uniqueness and Ulam–Hyers type stability results for nonlinear fractional neutral hybrid differential equations with time-varying lags
- Existence of positive solutions to a class of boundary value problems with derivative dependence on the half-line
- Solving Fredholm integro-differential equations involving integral condition: A new numerical method
- Bounds of some divergence measures on time scales via Abel–Gontscharoff interpolation
- Weighted 1MP and MP1 inverses for operators
- Non-commutative effect algebras, L-algebras, and local duality
- Operator Bohr-type inequalities
- Some results for weighted Bergman space operators via Berezin symbols
- Lower separation axioms in bitopogenous spaces
- Fisher information in order statistics and their concomitants for Cambanis bivariate distribution
- Irreducibility of strong size levels
Artikel in diesem Heft
- Right algebras in Sup and the topological representation of semi-unital and semi-integral quantales, revisited
- Topological representation of some lattices
- Exact-m-majority terms
- Polynomials whose coefficients are generalized Leonardo numbers
- A study on error bounds for Newton-type inequalities in conformable fractional integrals
- Improved conditions for the distributivity of the product for σ-algebras with respect to the intersection
- Close-to-convex functions associated with a rational function
- Complete monotonicity for a ratio of finitely many gamma functions
- Class of bounds of the generalized Volterra functions
- Some new uniqueness and Ulam–Hyers type stability results for nonlinear fractional neutral hybrid differential equations with time-varying lags
- Existence of positive solutions to a class of boundary value problems with derivative dependence on the half-line
- Solving Fredholm integro-differential equations involving integral condition: A new numerical method
- Bounds of some divergence measures on time scales via Abel–Gontscharoff interpolation
- Weighted 1MP and MP1 inverses for operators
- Non-commutative effect algebras, L-algebras, and local duality
- Operator Bohr-type inequalities
- Some results for weighted Bergman space operators via Berezin symbols
- Lower separation axioms in bitopogenous spaces
- Fisher information in order statistics and their concomitants for Cambanis bivariate distribution
- Irreducibility of strong size levels