Startseite Weighted 1MP and MP1 inverses for operators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Weighted 1MP and MP1 inverses for operators

  • Dijana Mosić EMAIL logo und Janko Marovt
Veröffentlicht/Copyright: 24. Mai 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The main aim of this paper is to extend the concepts of the 1MP and MP1 inverses defined for rectangular complex matrices. We present the weighted 1MP and MP1 inverses for a bounded linear operator between two Hilbert spaces as two new kinds of generalized inverses. The notions of the weighted 1MP and MP1 inverses are new in the context of rectangular complex matrices too. We establish a number of characterizations and some representations of the weighted 1MP and MP1 inverses. Several operator equations are solved applying the weighted 1MP and MP1 inverses. A special case of one of these equations is the normal equation which is related with the least-squares solution. As consequences of our results, we obtain new properties of the 1MP and MP1 inverses.


The first author is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, (grant no. 451-03-47/2023-01/200124). The second author acknowledges the financial support from the Slovenian Research and Innovation Agency, ARIS, (research core funding No. P1-0288).


Acknowledgement

The authors wish to thank the anonymous referees for helpful and constructive comments that improved the presentation of this paper.

  1. Communicated by Tomasz Natkaniec

References

[1] Ben-Israel, A.—Greville, T. N. E.: Generalized Inverses: Theory and Applications, 2nd ed., Springer, New York, Berlin, Heidelberg, Hong Kong, London, Milan, Paris, Tokyo, 2003.Suche in Google Scholar

[2] Chen, J. L.—Mosić, D.—Xu, S. Z.: On a new generalized inverse for Hilbert space operators, Quaest. Math. 43 (2020), 1331–1348.10.2989/16073606.2019.1619104Suche in Google Scholar

[3] Chountasis, S.—Katsikis, V. N.—Pappas, D.: Digital image reconstruction in the spectral domain utilizing the Moore–Penrose inverse, Math. Probl. Eng. 2010 (2010), Art. ID 750352.10.1155/2010/750352Suche in Google Scholar

[4] Djordjević, D. S.—Rakočević, V.: Lectures on Generalized Inverses, Faculty of Sciences and Mathematics, University of Niš, Niš, 2008.Suche in Google Scholar

[5] Dolinar, G.—Kuzma, B.—Marovt, J.—Ungor, B.: Properties of core-EP order in rings with involution, Front. Math. China 14 (2019), 715–736.10.1007/s11464-019-0782-8Suche in Google Scholar

[6] Douglas, R. G.: On majorization, factorization and range inclusion of operators in Hilbert spaces, Proc. Amer. Math. Soc. 17 (1966), 413–416.10.2307/2035178Suche in Google Scholar

[7] Hernández, M. V.—Lattanzi, M. B.—Thome, N.: From projectors to 1MP and MP1 generalized inverses and their induced partial orders, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), Art. No. 148.10.1007/s13398-021-01090-8Suche in Google Scholar

[8] Hernández, M. V.—Lattanzi, M. B.—Thome, N.: On 2MP-, MP2- and C2MP-inverses for rectangular matrices, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 116 (2022), Art. No. 156.10.1007/s13398-022-01289-3Suche in Google Scholar

[9] Malik, S. B.—Thome, N.: On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput. 226 (2014), 575–580.10.1016/j.amc.2013.10.060Suche in Google Scholar

[10] Marovt, J.—Mosić, D.—Cremer, I.: On some generalized inverses and partial orders in ∗-rings, J. Algebra Appl. 22 (2023), Art. ID 2350256.10.1142/S0219498823502560Suche in Google Scholar

[11] Maess, G.: Projection methods solving rectangular systems of linear equations, J. Comput. Appl. Math. 24 (1988), 107–119.10.1016/0377-0427(88)90346-9Suche in Google Scholar

[12] Mehdipour, M.—Salemi, A.: On a new generalized inverse of matrices, Linear Multilinear Algebra 66 (2018), 1046–1053.10.1080/03081087.2017.1336200Suche in Google Scholar

[13] Mosić, D.: Weighted gDMP inverse of operators between Hilbert spaces, Bull. Korean Math. Soc. 55(4) (2018), 1263–1271.Suche in Google Scholar

[14] Mosić, D.—Stanimirović, P. S.: Composite outer inverses for rectangular matrices, Quaest. Math. 44 (2021), 45–72.10.2989/16073606.2019.1671526Suche in Google Scholar

[15] Nashed, M. Z.: Generalized Inverses and Applications, Proceedings of an Advanced Seminar, Academic Press, New York, San Francisko, London, 1976.Suche in Google Scholar

[16] Penrose, R.: A generalized inverse for matrices, Math. Proc. Cambridge Philos. Soc. 51 (1955), 406–413.10.1017/S0305004100030401Suche in Google Scholar

[17] Rakić, D. S.—Ljubenović, M. Z.: 1MP and MP1 inverses and one-sided star orders in a ring with involution, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 117 (2023), Art. No 13.10.1007/s13398-022-01348-9Suche in Google Scholar

[18] Rao, C. R.—Mitra, S. K.—Bhimasankaram, P.: Determination of a matrix by its subclasses of generalized inverses, Sankhya A. 34 (1972), 5–8.Suche in Google Scholar

[19] Stanimirović, P. S.—Mosić, D.—Wei, Y.: A Survey of Composite Generalized Inverses. In: Generalized Inverses: Algorithms and Applications (I. Kyrchei, ed.), Series: Mathematics Research Development, Nova Science Publishers Inc, New York, 2022.Suche in Google Scholar

[20] Wang, C. X.—Liu, X.—Jin, H.: The MP weak group inverse and its application, Filomat 36(18) (2022), 6085–6102.10.2298/FIL2218085WSuche in Google Scholar

[21] Wei, M.: Equivalent conditions for generalized inverses product, Linear Algebra Appl. 266 (1997), 347–363.10.1016/S0024-3795(97)00035-9Suche in Google Scholar

[22] Werner, H. J.: When is BA a generalized inverse of AB, Linear Algebra Appl. 210 (1994), 255–263.10.1016/0024-3795(94)90474-XSuche in Google Scholar

Received: 2023-06-10
Accepted: 2023-07-13
Published Online: 2024-05-24
Published in Print: 2024-04-25

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0033/html
Button zum nach oben scrollen