Abstract
In this paper, we consider the class 𝓚𝓢(ψ0) of close-to-convex functions associated to a rational function ψ0(z) = (k2 + z2)/(k2 – kz), where k =
This work was supported by the Institute of Eminence, University of Delhi, Delhi, India–110007, Grant No. /IoE/2021/12/FRP
Acknowledgement
The authors are thankful to the referee for his valuable comments.
-
Communicated by Stanisława Kanas
References
[1] Ahuja, O.—Bohra, N.—Çetinkaya, A.—Kumar, S.: Univalent functions associated with the symmetric points and cardioid-shaped domain involving (p, q)-calculus, Kyungpook Math. J. 61(1) (2021), 75–98.Search in Google Scholar
[2] Ahuja, O.—Khatter, K.—Ravichandran V.: Toeplitz determinants associated with Ma-Minda classes of starlike and convex functions, Iran. J. Sci. Technol. Trans. A Sci. 45(6) (2021), 2021–2027.10.1007/s40995-021-01173-6Search in Google Scholar
[3] Ali, M. F.—Thomas, D. K.—Vasudevarao, A.: Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc. 97(2) (2018), 253–264.10.1017/S0004972717001174Search in Google Scholar
[4] Anand, S.—Jain, N. K.—Kumar, S.: Certain estimates of normalized analytic functions, Math. Slovaca 72(1) (2022), 85–102.10.1515/ms-2022-0006Search in Google Scholar
[5] Bulut, S.: Coefficient estimates for Libera type bi-close-to-convex functions, Math. Slovaca 71(6) (2021), 1401–1410.10.1515/ms-2021-0060Search in Google Scholar
[6] Duren, P. L.: Univalent Functions. Grundlehren Math. Wiss., Vol. 259, Springer-Verlag, New York, 1983.Search in Google Scholar
[7] Gao, C.—Zhou, S.: On a class of analytic functions related to the starlike functions, Kyungpook Math. J. 45(1) (2005), 123–130.Search in Google Scholar
[8] Grunsky, H.: Neue Abschätzungen zur konformen Abbildung ein-und mehrfach zusammenhängender bereiche, Schr. Deutsche Math.-Ver. 43 (1934), 140-143.Search in Google Scholar
[9] Güney, H.—Murugusundaramoorthy, G.—Srivastava, H. M.: The second Hankel determinant for a certain class of bi-close-to-convex functions, Results Math. 74(3) (2019), Art. No. 93.10.1007/s00025-019-1020-0Search in Google Scholar
[10] Janteng, A.—Halim, S. A.—Darus, M.: Coefficient inequality for a function whose derivative has a positive real part, JIPAM J. Inequal. Pure Appl. Math. 7(2) (2006), Art. No. 50.Search in Google Scholar
[11] Kaplan, W.: Close-to-convex schlicht functions, Michigan Math. J. 1(2) (1952), 169–185.10.1307/mmj/1028988895Search in Google Scholar
[12] Kanas, S. R.—Masih, V. S.—Ebadian, A.: Coefficients problems for families of holomorphic functions related to hyperbola, Math. Slovaca 70(3) (2020), 605–616.10.1515/ms-2017-0375Search in Google Scholar
[13] Kowalczyk, B.—Lecko, A.: Radius problem in classes of polynomial close-to-convex functions I, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 63(1) (2013), 65–77.Search in Google Scholar
[14] Kowalczyk, B.—Lecko, A.: Radius problem in classes of polynomial close-to-convex functions II. Partial solutions, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 63(2) (2013), 23–34.Search in Google Scholar
[15] Kowalczyk, J.—Leś-Bomba, E.: On a subclass of close-to-convex functions, Appl. Math. Lett. 23(10) (2010), 1147–1151.10.1016/j.aml.2010.03.004Search in Google Scholar
[16] Kowalczyk, J.— Leś, E.—Sokół, J.: Radius problems in a certain subclass of close-to-convex functions, Houston J. Math. 40(4) (2014), 1061–1072.Search in Google Scholar
[17] Kumar, S.—Ravichandran, V.: A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40(2) (2016), 199–212.Search in Google Scholar
[18] Kumar, S.—Rai, P.—Çetinkaya, A.: Radius estimates of certain analytic functions, Honam Math. J. 43(4) (2021), 627–639.Search in Google Scholar
[19] Kumar, S.—Anand, S.—Jain, N. K.: Hankel and Symmetric Toeplitz determinants for Sakaguchi starlike functions, Stud. Univ. Babeş-Bolyai Math., to appear.Search in Google Scholar
[20] Kumar, S.—Ravichandran, V.—Verma, S.: Initial coefficients of starlike functions with real coefficients, Bull. Iranian Math. Soc. 43(6) (2017), 1837–1854.Search in Google Scholar
[21] Kumar, S.—Ravichandran, V.: Functions defined by coefficient inequalities, Malays. J. Math. Sci. 11(3) (2017), 365–375.Search in Google Scholar
[22] Kumar, V.—Kumar, S.: Bounds on Hermitian-Toeplitz and Hankel determinants for strongly starlike functions, Bol. Soc. Mat. Mex. (3) 27(2) (2021), Art. No. 55.10.1007/s40590-021-00362-ySearch in Google Scholar
[23] Nevanlinna, R.: Über die schlichten Abbildungen des Einheits-Kreises, Översikt Finska Vetenskaps-Soc. Förh 62A (1920), 1-14.Search in Google Scholar
[24] Prajapat, J. K.—Maharana, S.—Bansal, D.: Radius of starlikeness and Hardy space of Mittag-Leffler functions, Filomat 32(18) (2018), 6475–6486.10.2298/FIL1818475PSearch in Google Scholar
[25] Pommerenke, Ch.: On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc. 41 (1966), 111–122.10.1112/jlms/s1-41.1.111Search in Google Scholar
[26] Pommerenke, Ch.: On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108–112.10.1112/S002557930000807XSearch in Google Scholar
[27] Rai, P.—Kumar, S.: Coefficient Inequalities for a subfamily of Sakaguchi starlike functions, Asian-Eur. J. Math. 16(5) (2023), Art. ID 2350084.10.1142/S1793557123500845Search in Google Scholar
[28] Ravichandran, V.—Verma, S.: Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris 353(6) (2015), 505–510.10.1016/j.crma.2015.03.003Search in Google Scholar
[29] Robertson, M. I. S.: On the theory of univalent functions, Ann. of Math. (2) 37(2) (1936), 374–408.10.2307/1968451Search in Google Scholar
[30] Răducanu, D.—Zaprawa, P.: Second Hankel determinant for close-to-convex functions, C. R. Math. Acad. Sci. Paris 355(10) (2017), 1063–1071.10.1016/j.crma.2017.09.006Search in Google Scholar
[31] Sharma, P.—Raina, R. K.—Sokół, J.: On a set of close-to-convex functions, Studia Sci. Math. Hungar. 55(2) (2018), 190–202.10.1556/012.2018.55.2.1381Search in Google Scholar
[32] Şeker, B.: On certain new subclass of close-to-convex functions, Appl. Math. Comput. 218(3) (2011), 1041–1045.10.1016/j.amc.2011.03.018Search in Google Scholar
[33] Vasudevarao, A.—Lecko, A.—Thomas, D. K.: Hankel, Toeplitz, and Hermitian-Toeplitz determinants for certain close-to-convex functions, Mediterr. J. Math. 19(1) (2022), Art. No. 22.10.1007/s00009-021-01934-ySearch in Google Scholar
[34] Vijayalakshmi, S. P.—Bulut, S.—Sudharsan, T. V.: Vandermonde determinant for a certain Sakaguchi type function in Limaçon domain, Asian-Eur. J. Math. 15(12) (2022), Art. ID 22502126.10.1142/S1793557122502126Search in Google Scholar
[35] Wang, Z.—Gao, C.—Yuan, S.: On certain subclass of close-to-convex functions, Acta Math. Acad. Paedagog. Nyházi (N.S.) 22(2) (2006), 171–177.Search in Google Scholar
[36] Xu, Q.-H.—Srivastava, H. M.—Li, Z.: A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett. 24(3) (2011), 396–401.10.1016/j.aml.2010.10.037Search in Google Scholar
© 2024 Mathematical Institute Slovak Academy of Sciences
Articles in the same Issue
- Right algebras in Sup and the topological representation of semi-unital and semi-integral quantales, revisited
- Topological representation of some lattices
- Exact-m-majority terms
- Polynomials whose coefficients are generalized Leonardo numbers
- A study on error bounds for Newton-type inequalities in conformable fractional integrals
- Improved conditions for the distributivity of the product for σ-algebras with respect to the intersection
- Close-to-convex functions associated with a rational function
- Complete monotonicity for a ratio of finitely many gamma functions
- Class of bounds of the generalized Volterra functions
- Some new uniqueness and Ulam–Hyers type stability results for nonlinear fractional neutral hybrid differential equations with time-varying lags
- Existence of positive solutions to a class of boundary value problems with derivative dependence on the half-line
- Solving Fredholm integro-differential equations involving integral condition: A new numerical method
- Bounds of some divergence measures on time scales via Abel–Gontscharoff interpolation
- Weighted 1MP and MP1 inverses for operators
- Non-commutative effect algebras, L-algebras, and local duality
- Operator Bohr-type inequalities
- Some results for weighted Bergman space operators via Berezin symbols
- Lower separation axioms in bitopogenous spaces
- Fisher information in order statistics and their concomitants for Cambanis bivariate distribution
- Irreducibility of strong size levels
Articles in the same Issue
- Right algebras in Sup and the topological representation of semi-unital and semi-integral quantales, revisited
- Topological representation of some lattices
- Exact-m-majority terms
- Polynomials whose coefficients are generalized Leonardo numbers
- A study on error bounds for Newton-type inequalities in conformable fractional integrals
- Improved conditions for the distributivity of the product for σ-algebras with respect to the intersection
- Close-to-convex functions associated with a rational function
- Complete monotonicity for a ratio of finitely many gamma functions
- Class of bounds of the generalized Volterra functions
- Some new uniqueness and Ulam–Hyers type stability results for nonlinear fractional neutral hybrid differential equations with time-varying lags
- Existence of positive solutions to a class of boundary value problems with derivative dependence on the half-line
- Solving Fredholm integro-differential equations involving integral condition: A new numerical method
- Bounds of some divergence measures on time scales via Abel–Gontscharoff interpolation
- Weighted 1MP and MP1 inverses for operators
- Non-commutative effect algebras, L-algebras, and local duality
- Operator Bohr-type inequalities
- Some results for weighted Bergman space operators via Berezin symbols
- Lower separation axioms in bitopogenous spaces
- Fisher information in order statistics and their concomitants for Cambanis bivariate distribution
- Irreducibility of strong size levels