Startseite Decomposition in direct sum of seminormed vector spaces and Mazur–Ulam theorem
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Decomposition in direct sum of seminormed vector spaces and Mazur–Ulam theorem

  • Oleksiy Dovgoshey EMAIL logo , Jürgen Prestin und Igor Shevchuk
Veröffentlicht/Copyright: 13. Mai 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

It was proved by S. Mazur and S. Ulam in 1932 that every isometric surjection between normed real vector spaces is affine. We generalize the Mazur–Ulam theorem and find necessary and sufficient conditions under which distance-preserving mappings between seminormed real vector spaces are linear.


Oleksiy Dovgoshey was supported by Volkswagen Stiftung Project “From Modeling and Analysis to Approximation”


Acknowledgement

We would like to thank the anonymous referee for the very careful reading of the paper and many helpful suggestions and improvements.

  1. (Communicated by Marcus Waurick)

References

[1] Baker, J. A.: Isometries in normed spaces, Amer. Math. Monthly 78 (1971), 655–658.Suche in Google Scholar

[2] Bilet, V.—Dovgoshey, O.: Pseudometric spaces. From minimality to maximality in the groups of combinatorial self-similarities, https://arxiv.org/abs/2304.03822.Suche in Google Scholar

[3] Bilet, V.—Dovgoshey, O.: When all permutations are combinatorial similarities, Bull. Korean Math. Soc. 60 (2023), 733–746.Suche in Google Scholar

[4] Dovgoshey, O.: Combinatorial properties of ultrametrics and generalized ultrametrics, Bull. Belg. Math. Soc. Simon Stevin 27 (2020), 379–417.Suche in Google Scholar

[5] Dovgoshey, O.—Luukkainen, J.: Combinatorial characterization of pseudometrics, Acta Math. Hungar. 161 (2020), 257–291.Suche in Google Scholar

[6] Gudder, S.—Strawther, D.: Strictly convex normed linear spaces, Proc. Amer. Math. Soc. 59 (1976), 263–267.Suche in Google Scholar

[7] Kelley, J. L.: General Topology . Grad. Texts in Math., vol. 27, Springer-Verlag, 1975.Suche in Google Scholar

[8] Kurepa, Đ.: Tableaux ramifiés d’ensemples, espaces pseudodistacies, C. R. Acad. Sci. Paris 198 (1934), 1563–1565.Suche in Google Scholar

[9] Mazur, S.—Ulam, S. M.: Sur les transformations isométriques d’espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946–948.Suche in Google Scholar

[10] Nica, B.: The Mazur-Ulam theorem, Expo. Math. 30 (2012), 397–398.Suche in Google Scholar

[11] Przeworska-Rolewicz, D.—Rolewicz, S.: Equations in Linear Spaces . Monografie Matematyczne, vol. 47, Państwowe Wydawnictwo Naukowe, Warszawa, 1968.Suche in Google Scholar

[12] Rudin, V.: Functional Analysis, McGraw-Hill, Inc., New York, 1991.Suche in Google Scholar

[13] Väisälä, J.: A proof of the Mazur–Ulam theorem, Amer. Math. Monthly 110 (2003), 633–635.Suche in Google Scholar

Received: 2022-10-22
Accepted: 2023-08-15
Published Online: 2024-05-13
Published in Print: 2024-02-26

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0010/html
Button zum nach oben scrollen