Home Mathematics Compact subsets of Cλ,u(X)
Article
Licensed
Unlicensed Requires Authentication

Compact subsets of Cλ,u(X)

  • Prashant Kumar and Pratibha Garg EMAIL logo
Published/Copyright: May 13, 2024
Become an author with De Gruyter Brill

Abstract

The famous Ascoli-Arzelà theorem served as a springboard for research into compactness in function spaces, particularly spaces of continuous functions. This paper investigates compact subsets of spaces of continuous functions endowed with topologies between the topology of pointwise convergence and the topology of uniform convergence. More precisely, this paper studies necessary and sufficient conditions for a subset to be compact in Cλ,u(X) for a locally-λ space X when λ ⊇ 𝓕(X), for a hemi-λ λf-space X when λ ⊆ 𝓟 𝓢(X), and for a k-space X when λ ⊇ 𝓚(X). This paper also studies that every bounded subset of Cλ,u(X) has compact closure for some classes of topological spaces X.

MSC 2010: 54C35; 54D30; 54D50

The authors acknowledge the DST-FIST program (Govt. of India) for providing the financial support for setting up the computing lab facility under the scheme “Fund for Improvement of Science and Technology (FIST -N0. SR/FST/MS-I/2018/24)”




  1. (Communicated by L’ubica Holá)

References

[1] Arkhangeľskii, A.: Topological Function Spaces. Math. Appl., vol.78, Springer, 1992.Search in Google Scholar

[2] Arzelà, C.: Sull’integrabilita delle Equazioni Differenziali Ordinarie, Gamberini e Parmeggiani, 1895.Search in Google Scholar

[3] Ascoli, G.: Le Curve Limite di una Varietà Data di Curve, Coi tipi del Salviucci, 1884.Search in Google Scholar

[4] Bagley, R. W.: On Ascoli theorems, Proc. Jpn. Acad. 37(8) (1961), 444–446.Search in Google Scholar

[5] Bagley, R. W.—Yang, J. S.: On k-spaces and function spaces, Proc. Amer. Math. Soc. 17(3) (1966), 703–705.Search in Google Scholar

[6] Beer, G.—Levi, S.: Strong uniform continuity, J. Math. Anal. Appl. 350 (2009), 567–589.Search in Google Scholar

[7] Berberian, S. K.—Halmos, P. R.: Lectures in Functional Analysis and Operator Theory, Grad. Texts in Math., vol. 15, Springer, 1974.Search in Google Scholar

[8] Fox, G.—Morales, P.: A non-Hausdorff Ascoli theorem for k3-spaces, Proc. Amer. Math. Soc. 39(3) (1973), 633–636.Search in Google Scholar

[9] Frolík, Z.: Generalizations of the Gδ-property of complete metric spaces, Czechoslovak Math. J. 10(85) (1960), 359–379.Search in Google Scholar

[10] Gabriyelyan, S.: Ascoli’s theorem for pseudocompact spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(4) (2020), Art. No. 174.Search in Google Scholar

[11] Gabriyelyan, S.—Grebìk, J.—Kąkol, J.—Zdomskyy, L.: The Ascoli property for function spaces, Topol. Appl. 214 (2016), 35–50.Search in Google Scholar

[12] Gale, D.: Compact sets of functions and function rings, Proc. Amer. Math. Soc. 1 (1950), 303–308.Search in Google Scholar

[13] Holá, L.: Complete metrizability of topologies of strong uniform convergence on bornologies, J. Math. Anal. Appl. 387 (2012), 770–775.Search in Google Scholar

[14] Holá, L.—Novotný, B.: Cardinal functions, bornologies and function spaces, Ann. di Mat. Pura ed Appl. 193 (2014), 1319–1327Search in Google Scholar

[15] Holá, L.—Holý, D.: Compactness in function spaces, Topol. Appl. 262 (2019), 20–29.Search in Google Scholar

[16] Jayne, J. E.: Spaces of Baire functions. I, Ann. Inst. Fourier (Grenoble) 24(4) (1974), 47–76.Search in Google Scholar

[17] Kelley, J. L.: General Topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955.Search in Google Scholar

[18] Krukowski, M.: Arzelà-Ascoli’s theorem in uniform spaces, Discrete Contin. Dyn. Syst. Ser. B 23(1) (2018), 283–294.Search in Google Scholar

[19] Kundu, S.—Raha, A. B.: The bounded-open topology and its relatives, Rend. Istit. Mat. Univ. Trieste 27(1–2) (1995), 61–77.Search in Google Scholar

[20] Li, R.—Zhong, S.—Swartz, C.: An improvement of the ArzèlaAscoli theorem, Topol. Appl. 159(8) (2012), 2058–2061.Search in Google Scholar

[21] McCoy, R. A.—Ntantu, I.: Topological Properties of Spaces of Continuous Functions, Lecture Notes in Math., vol. 1315, Springer Berlin Heidelberg, 2006.Search in Google Scholar

[22] Myers, S.: Equicontinuous sets of mappings, Ann. of Math. (1946) 496–502.Search in Google Scholar

[23] Noble, N.: Ascoli theorems and the exponential map, Trans. Amer. Math. Soc. 143 (1969), 393–411.Search in Google Scholar

[24] Osipov, A. V.: The C-compact-open topology on function spaces, Topol. Appl. 159(13) (2012), 3059–3066.Search in Google Scholar

Received: 2022-10-08
Accepted: 2023-03-06
Published Online: 2024-05-13
Published in Print: 2024-02-26

© 2024 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0012/html
Scroll to top button