Startseite On direct and inverse Poletsky inequalities with a tangential dilatation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On direct and inverse Poletsky inequalities with a tangential dilatation

  • Evgeny Sevost’yanov EMAIL logo und Valery Targonskii
Veröffentlicht/Copyright: 13. Mai 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This article is devoted to the study of mappings defined in the plane domain. Under certain conditions, the upper estimate of the distortion of the modulus of families of paths is obtained. Similarly, the upper estimate of the modulus of the families of paths in the pre-image under the mapping is also obtained.

  1. (Communicated by Tomasz Natkaniec)

References

[1] Ahlfors, L.: Lectures on Quasiconformal Mappings, Van Nostrand, New York, 1966.Suche in Google Scholar

[2] Bojarski, B.—Iwaniec, T.: Analytical foundations of the theory of quasiconformal mappings in ℝn, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 8 (1983), 257–324.Suche in Google Scholar

[3] Federer, H.: Geometric Measure Theory, Springer, Berlin, 1969.Suche in Google Scholar

[4] Gehring, F. W.: Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393.Suche in Google Scholar

[5] Golberg, A.—Salimov, R.—Sevost’yanov, E.: Normal families of discrete open mappings with controlled p-module, Contemp. Math. 667 (2016), 83–103.Suche in Google Scholar

[6] Hesse, J.: A p-extremal length and p-capacity equality, Ark. Mat. 13 (1975), 131–144.Suche in Google Scholar

[7] Ilyutko, D.—Sevost’yanov, E.: Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds, Sb. Math. 207 (2016), 65-112.Suche in Google Scholar

[8] Ilyutko, D.—Sevost’yanov, E.: Boundary behaviour of open discrete mappings on Riemannian manifolds, Sb. Math. 209 (2018), 605–651.Suche in Google Scholar

[9] Kovtonyuk, D.—Ryazanov, V.: New modulus estimates in Orlicz-Sobolev classes, Ann. Univ. Buchar. Math. Ser. 5 (LXIII) (2014), 131–135.Suche in Google Scholar

[10] Kovtonyuk, D.—Ryazanov, V.—Salimov, R.—Sevost’yanov, E.: Toward the theory of Orlicz-Sobolev classes, St. Petersburg Math. J. 25 (2014), 929–963.Suche in Google Scholar

[11] Kuratowski, K.: Topology, vol. 1, Academic Press, New York, 1968.Suche in Google Scholar

[12] Lehto, O.—Virtanen, K.: Quasiconformal Mappings in the Plane, Springer, New York etc., 1973.Suche in Google Scholar

[13] Martio, O.—Rickman, S.—Väisälä, J.: Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A. I. 488 (1971), 1–31.Suche in Google Scholar

[14] Martio, O.—Ryazanov, V.—Srebro, U.—Yakubov, E.: Moduli in Modern Mapping Theory, Springer Science + Business Media, LLC, New York, 2009.Suche in Google Scholar

[15] Martio, O.—Srebro, U.: Periodic quasimeromorphic mappings, J. Anal. Math. 28 (1975), 20–40.Suche in Google Scholar

[16] Maz’ja, V.: Sobolev Spaces, Springer-Verlag, Berlin, 1985.Suche in Google Scholar

[17] Poleckii, E. A.: The modulus method for nonhomeomorphic quasiconformal mappings, Math. USSR-Sb. 12(2) (1970), 260-270.Suche in Google Scholar

[18] Reshetnyak, Yu. G.: Space Mappings with Bounded Distortion . Transl. Math. Monogr., vol. 73, Amer. Math. Soc., Providence, RI 1989.Suche in Google Scholar

[19] Rickman, S.: Quasiregular Mappings . Results in Mathematic and Related Areas (3), 26, Springer-Verlag, Berlin, 1993.Suche in Google Scholar

[20] Ryazanov, V. I.—Sevost’yanov, E. A.: Equicontinuous classes of ring Q-homeomorphisms, Sib. Math. J. 48 (2007), 1093–1105.Suche in Google Scholar

[21] Ryazanov, V.—Srebro, U.—Yakubov, E.: On ring solutions of Beltrami equations, J. Anal. Math. 96 (2005), 117–150.Suche in Google Scholar

[22] Ryazanov, V.—Salimov, R.—Yakubov, E.: On Boundary Value Problems for the Beltrami Equations, Contemp. Math. 591 (2013), 211–242.Suche in Google Scholar

[23] Saks, S.: Theory of the Integral, Dover Publ. Inc., New York, 1964.Suche in Google Scholar

[24] Sevost’yanov, E.—Salimov, R.: On a Väisälä-type inequality for the angular dilatation of mappings and some of its applications, J. Math. Sci. 218 (2016), 69–88.Suche in Google Scholar

[25] Salimov, R. R.—Sevost’yanov, E. A.: On equicontinuity of one family of inverse mappings in terms of prime ends, Ukr. Math. J. 70 (2019), 1456–1466.Suche in Google Scholar

[26] Sevost’yanov, E: On the local behavior of open discrete mappings from the Orlicz-Sobolev classes, Ukr. Math. J. 68 (2017), 1447–1465.Suche in Google Scholar

[27] Sevost’yanov, E. A.: Boundary behavior and equicontinuity for families of mappings in terms of prime ends, St. Petersburg Math. J. 30 (2019), 973–1005.Suche in Google Scholar

[28] Sevost’yanov, E.: The inverse Poletsky inequality in one class of mappings, J. Math. Sci. 264 (2022), 455–470.Suche in Google Scholar

[29] Sevost’yanov, E.—Salimov, R.—Petrov, E.: On the removable of singularities of the Orlicz-Sobolev classes, J. Math. Sci. 222 (2017), 723–740.Suche in Google Scholar

[30] Sevost’yanov, E. A.—Skvortsov, S. A.: On the local behavior of the Orlicz-Sobolev classes, J. Math. Sci. 224 (2017), 563–581.Suche in Google Scholar

[31] Stoïlow, S.: Lęcons sur les Principes Topologiques de la Théorie des Fonctions Analytiques, Gauthier-Villars, Paris, 1956.Suche in Google Scholar

[32] Shlyk, V. A.: The equality between p-capacity and p-modulus, Sib. Math. J. 34 (1993), 1196-1200.Suche in Google Scholar

[33] Väisälä, J.: Lectures on n-Dimensional Quasiconformal Mappings . Lecture Notes in Math. 229, Springer-Verlag, Berlin etc., 1971.Suche in Google Scholar

[34] Vuorinen, M.: Exceptional sets and boundary behavior of quasiregular mappings in n-space, Ann. Acad. Sci. Fenn. Ser. A. I. Math. Dissertationes 11 (1976), 1–44.Suche in Google Scholar

[35] Ziemer, W. P.: Extremal length and conformal capacity, Trans. Amer. Math. Soc. 126 (1967), 460–473.Suche in Google Scholar

[36] Ziemer, W. P.: Extremal length and p-capacity, Michigan Math. J. 16 (1969), 43–51.Suche in Google Scholar

Received: 2023-01-20
Accepted: 2023-06-01
Published Online: 2024-05-13
Published in Print: 2024-02-26

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0007/pdf
Button zum nach oben scrollen