Startseite On hyper (r, q)-Fibonacci polynomials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On hyper (r, q)-Fibonacci polynomials

  • Hacéne Belbachir EMAIL logo und Fariza Krim
Veröffentlicht/Copyright: 13. Mai 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Related to generalized arithmetic triangle, we introduce the hyper (r, q)-Fibonacci polynomials as the sum of these elements along a finite ray starting from a specific point, which generalize the hyper-Fibonacci polynomials. We give generating function, recurrence relations and we show some properties whose application allows us to extend the notion of Cassini determinant and to study some ratios. Moreover, we derive a connection between these polynomials and the incomplete (r, q)-Fibonacci polynomials defined in this paper.


This work is partially supported by DGRSDT Grant no 0656701.




  1. (Communicated by István Gaál)

References

[1] Abbad, S.—Belbachir, H.—Benzaghou, B.: Companion sequences associated to the r-Fibonacci sequence: algebraic and combinatorial properties, Turkish J. Math. 43(3) (2019), 1095–1114.Suche in Google Scholar

[2] Ahmia, M.—Belbachir, H.—Belkhir, A.: The log-concavity and log-convexity properties associated to hyper-Pell and hyper-Pell-Lucas sequences, Ann. Math. Inform. 43 (2014), 3–12.Suche in Google Scholar

[3] Bahşi, M.—Solak, S.: On the norms of r-circulant matrices with the hyper-Fibonacci and Lucas numbers, J. Math. Inequal. 8(4) (2014), 693–705.Suche in Google Scholar

[4] Bahşi, M.—Solak, S.: A symmetric algorithm for golden ratio in hyper-Horadam numbers, Chin. J. Math. 2016 (2016), Art. ID 4361582.Suche in Google Scholar

[5] Barry, P.: A Catalan transform and related transformations on integer sequences, J. Integer Seq. 8 (2005), Art. No. 05.4.4.Suche in Google Scholar

[6] Belbachir, H.—Belkhir, A.: On generalized hyper-Fibonacci and incomplete Fibonacci polynomials in arithmetic progressions, Šiauliai Math. Semin. 11(19) (2016), 1–12.Suche in Google Scholar

[7] Belbachir, H.—Belkhir, A.: Combinatorial expressions involving Fibonacci, hyper-Fibonacci, and incomplete Fibonacci numbers, J. Integer Seq. 17(4) (2014), Art. No. 14.4.3.Suche in Google Scholar

[8] Belbachir, H.—Bouyakoub, A.—Krim, F.: On recurrences in generalized arithmetic triangle, Math. Slovaca 73(2) (2023), 305–334.Suche in Google Scholar

[9] Belbachir, H.—Komatsu, T.—Szalay, L.: Characterization of linear recurrences associated to rays in Pascal’s triangle, AIP Conf. Proc. 1264(1) (2010), 90–99.Suche in Google Scholar

[10] Belbachir, H.—Komatsu, T.—Szalay, L.: Linear recurrences associated to rays in Pascal’s triangle and combinatorial identities, Math. Slovaca 64(2) (2014), 287–300.Suche in Google Scholar

[11] Conway, J. H.—Guy, R.: The Book of Numbers, Springer, New York, 1996.Suche in Google Scholar

[12] Dil, A.—Mező, I.: A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput. 206(2) (2008), 942–951.Suche in Google Scholar

[13] Djordjević, G. B.—Srivastava, H. M.: Incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers, Math. Comput. Model. 42(9–10) (2005), 1049–1056.Suche in Google Scholar

[14] Falcon, S.: Catalan transform of the k-Fibonacci sequence, Commun. Korean Math. Soc. 28(4) (2013), 827–832.Suche in Google Scholar

[15] Filepponi, P.: Incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo (2) 45 (1996), 37–56.Suche in Google Scholar

[16] Graham, R. L.—Knuth, D. E.—Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd ed., 1989.Suche in Google Scholar

[17] Kuloğlu, B.—Özkan, E.—Shannon, A. G.: Incomplete generalized Vieta-Pell and Vieta-Pell-Lucas polynomials, Notes Number Theory Discrete Math. 27(4) (2021), 245–256.Suche in Google Scholar

[18] Martinjak, I.—Urbiha, I.: A new generalized Cassini determinant; https://doi.org/10.48550/arXiv.1509.03226.Suche in Google Scholar

[19] Özkan, E.—Uysal, M.—Kuloğlu, B.: Catalan transform of the incomplete Jacobsthal numbers and incomplete generalized Jacobsthal polynomials, Asian-Eur. J. Math. 15(6) (2022), Art. ID 2250119.Suche in Google Scholar

[20] Pintér, A.—Srivastava, H. M.: Generating functions of the incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo (2) 48 (1999), 591–596.Suche in Google Scholar

[21] Raab, J. A.: A generalization of the connection between the Fibonacci sequence and Pascal’s triangle, Fibonacci Quart. 1(3) (1963), 21–31.Suche in Google Scholar

[22] Ramírez, J. L.: Incomplete generalized Fibonacci and Lucas polynomials, Hacet. J. Math. Stat. 44(2) (2015), 363–373.Suche in Google Scholar

[23] Taşci, D.—Firengiz, M. C.: Incomplete Fibonacci and Lucas p-numbers, Math. Comput. Model. 52(9–10) (2010), 1763–1770.Suche in Google Scholar

[24] Zheng, L. N.—Liu, R.—Zhao, F. Z.: On the log-concavity of the hyper-Fibonacci numbers and the hyper-Lucas numbers, J. Integer Seq. 17(1) (2014), Art. No. 14.1.4.Suche in Google Scholar

Received: 2022-08-18
Accepted: 2023-03-26
Published Online: 2024-05-13
Published in Print: 2024-02-26

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0002/html
Button zum nach oben scrollen