Startseite Mathematik Enlargements of Quantales
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enlargements of Quantales

  • Urmas Luhaäär
Veröffentlicht/Copyright: 7. Oktober 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we study the enlargements of quantales. We prove three main results. First, if Q is a factorizable quantale, then any matrix quantale over Q is an enlargement of Q; second, any unital Rees matrix quantale over a quantale Q with an identity is an enlargement of Q; third, two quantales are Morita equivalent if and only if they have a joint enlargement. To prove these theorems, we use quantale matrices and modules and Morita contexts of quantales. Our main theorems and their proofs are parallel to those known for idempotent rings.

2020 Mathematics Subject Classification: 06F07

(Communicated by Anatolij Dvurečenskij)


REFERENCES

[1] Abramsky, S.—Vickers, S.: Quantales, observational logic and process semantics, Math. Struct. Comp. Sci. 3 (1993), 161–227.10.1017/S0960129500000189Suche in Google Scholar

[2] Ánh, P. N.—Márki, L.: Rees matrix rings, J. Algebra 81 (1983), 340–369.10.1016/0021-8693(83)90193-XSuche in Google Scholar

[3] Borceux, F.—Vitale, E. M.: A Morita theorem in topology, Rend. Circ. Mat. Palermo (2) Suppl. 29 (1992), 353–362.Suche in Google Scholar

[4] Laan, V.—Väljako, K.: Enlargements of rings, Comm. Algebra 49 (2021), 1764–1772.10.1080/00927872.2020.1851702Suche in Google Scholar

[5] Lawson, M. V.: Enlargements of regular semigroups, Proc. Edinburgh Math. Soc. 39 (1996), 425–460.10.1017/S001309150002321XSuche in Google Scholar

[6] Lawson, M. V.: Morita equivalence of semigroups with local units, J. Pure Appl. Algebra 215 (2011), 455–470.10.1016/j.jpaa.2010.04.030Suche in Google Scholar

[7] Lawson, M. V.—Márki, L.: Enlargements and coverings by Rees matrix semigroups, Monatsh. Math. 129 (2000), 191–195.10.1007/s006050050070Suche in Google Scholar

[8] Márki, L.—Steinfeld, O.: A Rees matrix construction without regularity. Contributions to General Algebra 6, Hölder-Pichler-Tempsky, Vienna, 1988, pp. 197–202.Suche in Google Scholar

[9] Paseka, J.: Morita equivalence in the context of Hilbert modules. Proceedings of the Ninth Prague Topological Symposium, 2001, 223–251, Topol. Atlas, North Bay, ON, 2002.Suche in Google Scholar

[10] Paseka, J.: Characterization of Morita equivalence pairs of quantales, Internat. J. Theoret. Phys. 44 (2005), 875–883.10.1007/s10773-005-7065-8Suche in Google Scholar

[11] Paseka, J.: Morita equivalence for m-regular quantales. Contributions to General Algebra 16, Heyn, Klagenfurt, 2005, pp. 155–171.Suche in Google Scholar

[12] Petrich, M.: Rings and Semigroups, Springer-Verlag, 1974.10.1007/BFb0061470Suche in Google Scholar

[13] Petrich, M.: Some constructions related to Rees matrix rings, Acta Math. Univ. Comenian. (N.S.) 71 (2002), 69–91.Suche in Google Scholar

[14] Russo, C.: Quantale Modules, with Applications to Logic and Image Processing, PhD thesis, 2007; https://arxiv.org/pdf/0909.4493.pdf.Suche in Google Scholar

[15] Quantaloid, Nlab; https://ncatlab.org/nlab/show/quantaloid.Suche in Google Scholar

[16] Quantale, Encyclopedia of Mathematics; http://encyclopediaofmath.org/index.php?title=Quantale&oldid=51710.Suche in Google Scholar

[17] Rosenthal, K. I.: Quantales and Their Applications, Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, 1990.Suche in Google Scholar

[18] Talwar, S.: Morita equivalence for semigroups, J. Austral. Math. Soc. (Series A) 59 (1995), 81–111.10.1017/S1446788700038489Suche in Google Scholar

[19] Talwar, S.: Strong Morita equivalence and a generalisation of the Rees theorem, J. Algebra 181 (1996), 371–394.10.1006/jabr.1996.0125Suche in Google Scholar

Received: 2022-07-04
Accepted: 2022-11-09
Published Online: 2023-10-07

© 2023 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0082/html
Button zum nach oben scrollen