Home The Rational Zero-Divisor Cup-Length of Oriented Partial Flag Manifolds
Article
Licensed
Unlicensed Requires Authentication

The Rational Zero-Divisor Cup-Length of Oriented Partial Flag Manifolds

  • Vimala Ramani
Published/Copyright: October 7, 2023
Become an author with De Gruyter Brill

ABSTRACT

We compute the rational zero-divisor cup-length of the oriented partial flag manifold F˜(n1,,nk) of type (n1,…, nk), k ≥ 2. For certain classes of oriented partial flag manifolds, we compare the rational zero-divisor cup-length and the 2-zero-divisor cup-length.

2020 Mathematics Subject Classification: 57R19; 57T15; 55M30

Dedicated to the memory of Professor Július Korbaš with respect

(Communicated by Tibor Macko)


Acknowledgement

The author thanks Professor Parameswaran Sankaran for the constant encouragement and very valuable and illuminating discussions. The author thanks the anonymous referee for very careful reading of the manuscript and very helpful comments and suggestions due to which the paper is more detailed and complete.

References

[1] Borel, A.: Sur la cohomologie des espaces fibrs principaux et des espaces homognes de groupes de Lie compacts, Ann. Math. 57(2) (1953), 115–207.10.2307/1969728Search in Google Scholar

[2] Borel, A.: Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. U.S.A. 40(12) (1954), 1147–1151.10.1073/pnas.40.12.1147Search in Google Scholar PubMed PubMed Central

[3] Bruner, R. R.—Catanzaro, M.—May J. P.: Characteristic Cclasses, lecture notes available at http: //www.math.uchicago.edu/may/CHAR/charclasses.pdf.Search in Google Scholar

[4] Cohen, D.—Suciu, A.: Boundary manifolds of projective hypersurfaces, Adv. Math. 206 (2006), 538–566.10.1016/j.aim.2005.10.003Search in Google Scholar

[5] Davis, D.: On the zero-divisor-cup-length of planar polygon spaces modulo oriented isometry, Topology Appl. 207 (2016), 43–53.10.1016/j.topol.2016.04.018Search in Google Scholar

[6] Farber, M.: Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), 211–221.10.1007/s00454-002-0760-9Search in Google Scholar

[7] Farber, M.—Tabachnikov, S.—Yuzvinsky, S.: Topological robotics: motion planning in projective spaces, Int. Math. Res. Not. IMRN 2003(34) (2003), 1853–1870.10.1155/S1073792803210035Search in Google Scholar

[8] Farber, M.: Instabilities of robot motion, Topology Appl. 140 (2004), 245–266.10.1016/j.topol.2003.07.011Search in Google Scholar

[9] He, C.: Cohomology rings of the real and oriented partial flag manifolds, Topology Appl. 279 (2020), Art. ID 107239.10.1016/j.topol.2020.107239Search in Google Scholar

[10] Korbaš, J.—Lörinc, J.: The2-cohomology cup-length of real flag manifolds, Fund. Math. 178 (2003), 143–158.10.4064/fm178-2-4Search in Google Scholar

[11] Korbaš, J.: The cup-length of the oriented Grassmannians vs a new bound for zero-cobordant manifolds, Bull. Belg. Math Soc. Simon Stevin 17 (2010), 69–81.10.36045/bbms/1267798499Search in Google Scholar

[12] Korbaš, J.—Rusin, T.: A note on the2-cohomology algebra of oriented Grassmann manifolds, Rend. Circ. Mat. Palermo, II. Ser 65(3) (2016), 507–517.10.1007/s12215-016-0249-7Search in Google Scholar

[13] Kotschick, D.—Terzlc, S.: On formality of generalized symmetric spaces, Math. Proc. Cambridge Phil. Soc. 134(3) (2003), 491–505.10.1017/S0305004102006540Search in Google Scholar

[14] Miller, C.: The topology of rotation groups, Ann. Math. 57(2) (1953), 90–114.10.2307/1969727Search in Google Scholar

[15] Ramani, V.: On the topological complexity of Grassmann manifolds, Math. Slovaca 70(5) (2020), 1197–1210.10.1515/ms-2017-0425Search in Google Scholar

[16] Ramani, V.—Sankaran, P.: On degrees of maps between Grassmannians, Proc. Indian Acad. Sci. Math.Sci. 107(1) (1997), 13–19.10.1007/BF02840469Search in Google Scholar

[17] Stong, R. E.: Cup-products in Grassmannians, Topology Appl. 13 (1982), 103–113.10.1016/0166-8641(82)90012-8Search in Google Scholar

[18] Stong, R. E.: Semicharacteristics of oriented Grassmannians, J. Pure Appl. Algebra 33 (1984), 97–103.10.1016/0022-4049(84)90029-XSearch in Google Scholar

Received: 2021-12-24
Accepted: 2023-02-03
Published Online: 2023-10-07

© 2023 Mathematical Institute Slovak Academy of Sciences

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0097/html
Scroll to top button