ABSTRACT
The purpose of this paper is to find coefficient estimates for the class of functions
REFERENCES
[1] Alimohammadi, D.— Adegani, E. A.— Bulboacă, T.—Cho N. E.: Logarithmic coefficients for classes related to convex functions, Bull. Malays. Math. Sci. Soc. 44(4) (2021), 2659–2673.10.1007/s40840-021-01085-zSearch in Google Scholar
[2] Alimohammadi, D.—Adegani, E. A.—Bulboacă, T.—Cho, N. E.: Logarithmic coefficients bounds and coefficient conjectures for classes associated with convex functions, J. Funct. Spaces 2021, Art. ID 6690027.10.1155/2021/6690027Search in Google Scholar
[3] Bano, K.—Raza, M.: Starlikness associated with Euler numbers, Authorea, preprint; https://doi.org/10.22541/au.165034445.53240079/v1.10.22541/au.165034445.53240079/v1Search in Google Scholar
[4] Bansal, D.—Prajapat, J. K.: Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ. 61(3) (2016), 338–350.10.1080/17476933.2015.1079628Search in Google Scholar
[5] Carathéodory, C.: Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64(1) (1907), 95–115.10.1007/BF01449883Search in Google Scholar
[6] Carathéodory, C.: Über den Variabilitätsbereich der fourier’schen Konstanten von positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo 32 (1911), 193–217.10.1007/BF03014795Search in Google Scholar
[7] Carlitz, L.: A sequence of integers related to the Bessel functions, Proc. Amer. Math. Soc. 14 (1963), 1–9.10.1090/S0002-9939-1963-0166147-XSearch in Google Scholar
[8] Carlson, B. C.—Shaffer, S. B.: Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (2002), 737–745.10.1137/0515057Search in Google Scholar
[9] Cho, N. E.—Kim, T. H.: Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 40(3) (2003), 399–410.10.4134/BKMS.2003.40.3.399Search in Google Scholar
[10] Cho, N. E.—Kumar, S.—Kumar, V.—Ravichandran, V.—Srivastava, H. M.: Starlike functions related to the Bell numbers, Symmetry 11(2) (2019), Art. No. 219.10.3390/sym11020219Search in Google Scholar
[11] Cho, N. E.—Srivastava, H. M.: Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Model. 37(1–2) (2003), 39–49.10.1016/S0895-7177(03)80004-3Search in Google Scholar
[12] Deniz, E.: Sharp coefficients bounds for starlike functions associated with generalized telephone numbers, Bull. Malays. Math. Sci. Soc. 44 (2021), 1525–1542.10.1007/s40840-020-01016-4Search in Google Scholar
[13] Dziok, J.—Srivastava, H. M.: Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14(1) (2003), 7–18.10.1080/10652460304543Search in Google Scholar
[14] El-Deeb, S. M.—Bulboacă, T.: Fekete-Szegő inequalities for certain class of analytic functions connected with q-anlogue of Bessel function, J. Egyptian. Math. Soc. 27 (2019), Art. No. 42.10.1186/s42787-019-0049-2Search in Google Scholar
[15] Fekete, M.—Szegő, G.: Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc. 8(2) (1933), 85–89.10.1112/jlms/s1-8.2.85Search in Google Scholar
[16] Guo, D.—Liu, M. S.: On certain subclass of Bazilevič functions, J. Inequal. Pure Appl. Math. 8(1) (2007), Art. No. 12.10.1155/2007/48294Search in Google Scholar
[17] Hohlov, YU. E.: Hadamard convolutions, hypergeometric functions and linear operators in the class of univalent functions, Dokl. Akad. Nauk Ukr. SSR, Ser. A 7 (1984), 25–27.Search in Google Scholar
[18] Howard, F. T.: The van der Pol numbers and a related sequence of rational numbers, Math. Nachr. 42 (1969), 89–102.10.1002/mana.19690420107Search in Google Scholar
[19] Howard, F. T.: Factors and roots of the van der Pol polynomials, Proc. Amer. Math. Soc. 55 (1975), 1–8.10.1090/S0002-9939-1975-0379347-9Search in Google Scholar
[20] Keogh, F. R.—Merkes, E. P.: A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.10.1090/S0002-9939-1969-0232926-9Search in Google Scholar
[21] Kishore, N.: The Rayleigh function, Proc. Amer. Math. Soc. 14 (1963), 527–533.10.1090/S0002-9939-1963-0151649-2Search in Google Scholar
[22] Kishore, N.: The Rayleigh polynomial, Proc. Amer. Math. Soc. 15 (1964), 911–917.10.1090/S0002-9939-1964-0168823-2Search in Google Scholar
[23] Kumar, V.—Cho, N. E.—Ravichandran, V.—Srivastava, H. M.: Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca 69(5) (2019), 1053–1064.10.1515/ms-2017-0289Search in Google Scholar
[24] Libera, R. J.—Zlotkiewicz, E. J.: Coefficient bounds for the inverse of a function with derivative in
[25] Ma, W. C.—Minda, D.: A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis, Tianjin 1992, (Z. Li, F. Ren, L. Yang and S. Zhang, eds.), Int. Press, Cambridge, MA, 1994, pp. 157–169.Search in Google Scholar
[26] Mocanu, P. T.: Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica 11(34) (1969), 127–133 (in French).Search in Google Scholar
[27] Murugusundaramoorthy, G.: Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat. 28 (2017), 1357–1366.10.1007/s13370-017-0520-xSearch in Google Scholar
[28] Murugusundaramoorthy, G.—Vijaya, K.: Certain subclasses of analytic functions associated with generalized telephone numbers, Symmetry 14 (2022), Art. No. 1053.10.3390/sym14051053Search in Google Scholar
[29] Murugusundaramoorthy, G.—VIJAYA, K.—PORWAL, S.: Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series, Hacet. J. Math. Stat. 45(4) (2016), 1101–1107.10.15672/HJMS.20164513110Search in Google Scholar
[30] Noreen, S.—Raza, M.—Malik, S. N.: Certain geometric properties of Mittag-Leffler functions, J. Inequal. Appl. 2019 (2019), Art. No. 94.10.1186/s13660-019-2044-4Search in Google Scholar
[31] Owa, S.—Srivastava, H. M.: Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057–1077.10.4153/CJM-1987-054-3Search in Google Scholar
[32] Pommerenke, CH.: Univalent Functions, Vandenhoeck &Ruprecht, Göttingen, 1975.Search in Google Scholar
[33] Porwal, S.: An application of a Poisson distribution series on certain analytic functions, J. Complex Anal. (2014), Art. ID 984135.10.1155/2014/984135Search in Google Scholar
[34] Porwal, S.—Kumar, M.: A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat. 27(5) (2016), 1021–1027.10.1007/s13370-016-0398-zSearch in Google Scholar
[35] Raina, R. K.—Sokół, J.: On coeffcient estimates for a certain class of starlike functions, Hacet. J. Math. Stat. 44(6) (2015), 1427–1433.10.15672/HJMS.2015449676Search in Google Scholar
[36] Raza, M.—Binyamin, M. A.—Riaz, A.: A study of convex and related functions in the perspective of geometric function theory. In: Inequalities with Generalized Convex Functions and Applications, (M. U. Awan, G. Cristescu, eds.), Springer, to appear.Search in Google Scholar
[37] Ruscheweyh, S.: New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109–115.10.1090/S0002-9939-1975-0367176-1Search in Google Scholar
[38] Sălăgean, G. Ş.: Subclasses of univalent functions. In: Complex Analysis – fifth Romanian-Finnish seminar, Part 1, Bucharest 1981, Lecture Notes in Math., Vol. 1013, Springer, Berlin, pp. 362–372.10.1007/BFb0066543Search in Google Scholar
[39] Sharma, R. B.—Haripriya, M.: On a class of a-convex functions subordinate to a shell shaped region, J. Anal. 25 (2017), 93–105.10.1007/s41478-017-0031-zSearch in Google Scholar
[40] Sokół, J.—Thomas, D. K.: Further results on a class of starlike functions related to the Bernoulli lemniscate, Houston J. Math. 44(1) (2018), 83–95.Search in Google Scholar
[41] Srivastava, H. M.—Attiya, A. A.: An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms Spec. Funct. 18 (2007), 207–216.10.1080/10652460701208577Search in Google Scholar
[42] Srivastava, H. M.—Mishra, A. K.—DAS, M. K.: The Fekete-Szegő problem for a subclass of close-to-convex functions, Complex Var. Theory Appl. 44(2) (2001), 145–163.10.1080/17476930108815351Search in Google Scholar
[43] Srivastava, H. M.—Owa, S.: An application of the fractional derivative, Math. Japon. 29 (1984), 383–389.Search in Google Scholar
[44] Srivastava, H. M.—Owa, S.: Univalent functions, Fractional Calculus, and Their Applications, Ellis Harwood Limited, Chichester, 1989.Search in Google Scholar
[45] Van Der Pol, B.: Smoothing and “unsmoothing”. In: Probability and Related Topics in Physical Sciences (M. Kac, ed.), New York, Interscience, 1959, pp. 223—235.Search in Google Scholar
© 2023 Mathematical Institute Slovak Academy of Sciences
Articles in the same Issue
- Remembering Professor Štefan Znám, 9.2.1936–17.7.1993
- Chordal and Perfect Zero-Divisor Graphs of Posets and Applications to Graphs Associated with Algebraic Structures
- Enlargements of Quantales
- Multiplicative Dependent Pairs in the Sequence of Padovan Numbers
- Dirichlet Series with Periodic Coefficients, Riemann’s Functional Equation, and Real Zeros of Dirichlet L-Functions
- On the Rational Parametric Solution of Diagonal Quartic Varieties
- Theory of Certain Non-Univalent Analytic Functions
- Initial Coefficients and Fekete-Szegő Inequalities for Functions Related to van der Pol Numbers (VPN)
- A Conjecture on H3(1) for Certain Starlike Functions
- Coefficient Problems of Quasi-Convex Mappings of Type B on the Unit Ball in Complex Banach Spaces
- Complete Monotonicity and Inequalities Involving the k-Gamma and k-Polygamma Functions
- Study of Oscillation Criteria of Odd-Order Differential Equations with Mixed Neutral Terms
- On a System of Difference Equations Defined by the Product of Separable Homogeneous Functions
- On the Existence of Bi-Lipschitz Equivalent Metrics in Semimetric Spaces
- The Lehmann Type II Teissier Distribution
- Asymptotic Predictive Inference of Negative Lower Tail Index Distributions
- On Numerical Problems in Computing Life Annuities Based on the Makeham–Beard Law
- The Rational Zero-Divisor Cup-Length of Oriented Partial Flag Manifolds
Articles in the same Issue
- Remembering Professor Štefan Znám, 9.2.1936–17.7.1993
- Chordal and Perfect Zero-Divisor Graphs of Posets and Applications to Graphs Associated with Algebraic Structures
- Enlargements of Quantales
- Multiplicative Dependent Pairs in the Sequence of Padovan Numbers
- Dirichlet Series with Periodic Coefficients, Riemann’s Functional Equation, and Real Zeros of Dirichlet L-Functions
- On the Rational Parametric Solution of Diagonal Quartic Varieties
- Theory of Certain Non-Univalent Analytic Functions
- Initial Coefficients and Fekete-Szegő Inequalities for Functions Related to van der Pol Numbers (VPN)
- A Conjecture on H3(1) for Certain Starlike Functions
- Coefficient Problems of Quasi-Convex Mappings of Type B on the Unit Ball in Complex Banach Spaces
- Complete Monotonicity and Inequalities Involving the k-Gamma and k-Polygamma Functions
- Study of Oscillation Criteria of Odd-Order Differential Equations with Mixed Neutral Terms
- On a System of Difference Equations Defined by the Product of Separable Homogeneous Functions
- On the Existence of Bi-Lipschitz Equivalent Metrics in Semimetric Spaces
- The Lehmann Type II Teissier Distribution
- Asymptotic Predictive Inference of Negative Lower Tail Index Distributions
- On Numerical Problems in Computing Life Annuities Based on the Makeham–Beard Law
- The Rational Zero-Divisor Cup-Length of Oriented Partial Flag Manifolds