Theory of Certain Non-Univalent Analytic Functions
-
Kamaljeet Gangania
ABSTRACT
We investigate the non-univalent function’s properties reminiscent of the theory of univalent starlike functions. Let the analytic function
Funding statement: The work of Kamajeet Gangania is supported by University Grant Commission, New-Delhi, India under UGC-Ref. No.:1051/(CSIR-UGC NET JUNE 2017).
REFERENCES
[1] Abdulhadi, Z.— El Hajj, L.: On the univalence of poly-analytic functions, Comput. Methods Funct. Theory 22 (2022), 169–181.10.1007/s40315-021-00378-5Search in Google Scholar
[2] Aizenberg, L.: Remarks on the Bohr and Rogosinski phenomena for power series, Anal. Math. Phys. 2(1) (2012), 69–78.10.1007/s13324-012-0024-7Search in Google Scholar
[3] Ali, R. M.—Ravichandran, V.—Seenivasagan, N.: Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), 35–46.10.1016/j.amc.2006.08.100Search in Google Scholar
[4] Alarif, N. M.—Ali, R. M.—Ravichandran, V.: On the second Hankel determinant for the kth-root transform of analytic functions, Filomat 31(2) (2017), 227–245.10.2298/FIL1702227ASearch in Google Scholar
[5] Alkhaleefah, S. A.—Kayumov, I. R.—Ponnusamy, S.: Bohr-Rogosinski inequalities for bounded analytic functions, Lobachevskii J. Math. 41(11) (2020), 2110–2119.10.1134/S1995080220110049Search in Google Scholar
[6] Bohr, H.: A theorem concerning power series, Proc. London Math. Soc. 13(2) (1914), 1–5.10.1112/plms/s2-13.1.1Search in Google Scholar
[7] Bhowmik, B.: On concave univalent functions, Math. Nachr. 285(5-6) (2012), 606–612.10.1002/mana.201000063Search in Google Scholar
[8] Bhowmik, B.—Das, N.: Bohr phenomenon for subordinating families of certain univalent functions, J. Math. Anal. Appl. 462(2) (2018), 1087–1098.10.1016/j.jmaa.2018.01.035Search in Google Scholar
[9] Chen, H.—Gauthier, P.—Hengartner, W.: Bloch constants for planar harmonic mappings, Proc. Am. Math. Soc. 128 (2000), 3231–3240.10.1090/S0002-9939-00-05590-8Search in Google Scholar
[10] Cho, N. E.—Kwon, O. S.—LECKO, A.—SIM, Y. J.: Sharp estimates of generalized Zalcman functional of early coefficients for Ma-Minda type functions, Filomat 32 18 (2018), 6267–6280.10.2298/FIL1818267CSearch in Google Scholar
[11] Gangania, K.—Kumar, S. S.: Bohr-Rogosinski phenomenon for
[12] Gangania, K.—Kumar, S. S.: On certain generalizations of
[13] Gangania, K.—Kumar, S. S.: Bohr radius for some classes of Harmonic mappings, Iran. J. Sci. Technol. Trans. Sci. 46 (2022), 883–890.10.1007/s40995-022-01304-7Search in Google Scholar
[14] Gangania, K.—Kumar, S. S.: A generalized Bohr-Rogosinski phenomenon, https://arxiv.org/abs/2202.02560.Search in Google Scholar
[15] Kanas, S.—Masih, V. S.: On the behaviour of analytic representation of the generalized Pascal snail, Anal. Math. Phys. 11 (2021), Art. No. 77.10.1007/s13324-021-00506-3Search in Google Scholar
[16] Kargar, R.—Ebadian, A.—Sokol, J.: On Booth lemniscate and starlike functions, Anal. Math. Phys. 9 (2019), 143–154.10.1007/s13324-017-0187-3Search in Google Scholar
[17] Kayumov, I. R.—Khammatova, D. M.—Ponnusamy, S.: Bohr-Rogosinski phenomenon for analytic functions and Cesaro operators, J. Math. Anal. Appl. 496(2) (2021), 124–824.10.1016/j.jmaa.2020.124824Search in Google Scholar
[18] Kumar, S.—Sahoo, S. K.: A generalization of the Bohr-Rogosinski sum, https://arxiv.org/abs/2106.06502vl.Search in Google Scholar
[19] Kumar, S. S.—Kamaljeet, G.: A cardioid domain and starlike functions, Anal. Math. Phys. 11(2) (2021), Art. No. 54.10.1007/s13324-021-00483-7Search in Google Scholar
[20] Kumar, S. S.—Kamaljeet, G.: On geometrical properties of certain analytic functions, Iran. J. Sci. Technol. Trans. Sci. 45 (2021), 1437–1445.10.1007/s40995-021-01116-1Search in Google Scholar
[21] Kwon, O. S.—Lecko, A.—Sim, Y. J.: The bound of the Hankel determinant of the third kind for starlike functions, Bull. Malays. Math. Sci. Soc. 42(2) (2019), 767–780.10.1007/s40840-018-0683-0Search in Google Scholar
[22] Landau, E.—Gaier, D.: Darstellung und Begründung Einiger Neuerer Ergebnisse der Funktionentheorie, 3rd edition, Springer-Verlag, Berlin, 1986.10.1007/978-3-642-71438-2Search in Google Scholar
[23] Lecko, A.—SIM, Y. J.—SMIAROWSKA, B.: The sharp bound of the Hankel determinant of the third kind for starlike functions of order half, Complex Anal. Oper. Theory 13 (2019), 2231–2238.10.1007/s11785-018-0819-0Search in Google Scholar
[24] Lee, S. K.—Ravichandran,V.—Supramaniam, S.: Bounds for the second Hankel determinant of certain univalent functions, J. Ineq. Appl. 2013 (2013), Art. No. 281.10.1186/1029-242X-2013-281Search in Google Scholar
[25] LI, M.—SUGAWA, T.: A note on successive coefficients of convex functions, Comput. Methods Funct. Theory 17(2) (2017), 179–193.10.1007/s40315-016-0177-8Search in Google Scholar
[26] Liu, M. S.: Estimates on Bloch constants for planar harmonic mappings, Sci. China Ser. A Math 52 (2009), 1142–1146.10.1016/j.camwa.2009.01.009Search in Google Scholar
[27] Ma, W. C.: Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl. 234(1) (1999), 328–339.10.1006/jmaa.1999.6378Search in Google Scholar
[28] Ma, W. C.—Minda, D.: A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, Tianjin, Conf. Proc. Lecture Notes Anal., I Int Press, Cambridge, MA, 1992, 157–169.Search in Google Scholar
[29] Masih, V. S.—Ebadian, A.—Yalçin, S.: Some properties associated to a certain class of starlike functions, Math. Slovaca 69 (2019), 1329–1340.10.1515/ms-2017-0311Search in Google Scholar
[30] Piejko, K.—Sokół, J.: Hadamard product of analytic functions and some special regions and curves, J. Inequal. Appl. 2013 (2013), Art. No. 420.10.1186/1029-242X-2013-420Search in Google Scholar
[31] Piejko, K.—Sokół, J.: On Booth lemniscate and Hadamard product of analytic functions, Math. Slovaca 65 (2015), 1337–1344.10.1515/ms-2015-0093Search in Google Scholar
[32] Ponnusamy, S.—Vijayakumar, R.—Wirths, K. J.: Modifications of Bohr’s inequality in various settings, https://arxiv.org/abs/2104.05920.Search in Google Scholar
[33] Prokhorov, D. V.—Szynal, J.: Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 35(15) (1981), 125–143.Search in Google Scholar
[34] Rogosinski, W.: Über Bildschranken bei Potenzreihen und ihren Abschnitten, Math. Z. 17(1) (1923), 260–276.10.1007/BF01504347Search in Google Scholar
[35] Ruscheweyh, S.—Stankiewicz, J.: Subordination under convex univalent functions, Bull. Polish. Acad. Sci. Math. 33 (1985), 499–502.Search in Google Scholar
[36] Schur, I.—Szegö, G.: Über die Abschnitte einer im Einheitskreise beschrankten Potenzreihe, Sitz. Ber. Preuss. Akad. Wiss. Berl. Phys.-Math. Kl. (1925), 545–560.Search in Google Scholar
© 2023 Mathematical Institute Slovak Academy of Sciences
Articles in the same Issue
- Remembering Professor Štefan Znám, 9.2.1936–17.7.1993
- Chordal and Perfect Zero-Divisor Graphs of Posets and Applications to Graphs Associated with Algebraic Structures
- Enlargements of Quantales
- Multiplicative Dependent Pairs in the Sequence of Padovan Numbers
- Dirichlet Series with Periodic Coefficients, Riemann’s Functional Equation, and Real Zeros of Dirichlet L-Functions
- On the Rational Parametric Solution of Diagonal Quartic Varieties
- Theory of Certain Non-Univalent Analytic Functions
- Initial Coefficients and Fekete-Szegő Inequalities for Functions Related to van der Pol Numbers (VPN)
- A Conjecture on H3(1) for Certain Starlike Functions
- Coefficient Problems of Quasi-Convex Mappings of Type B on the Unit Ball in Complex Banach Spaces
- Complete Monotonicity and Inequalities Involving the k-Gamma and k-Polygamma Functions
- Study of Oscillation Criteria of Odd-Order Differential Equations with Mixed Neutral Terms
- On a System of Difference Equations Defined by the Product of Separable Homogeneous Functions
- On the Existence of Bi-Lipschitz Equivalent Metrics in Semimetric Spaces
- The Lehmann Type II Teissier Distribution
- Asymptotic Predictive Inference of Negative Lower Tail Index Distributions
- On Numerical Problems in Computing Life Annuities Based on the Makeham–Beard Law
- The Rational Zero-Divisor Cup-Length of Oriented Partial Flag Manifolds
Articles in the same Issue
- Remembering Professor Štefan Znám, 9.2.1936–17.7.1993
- Chordal and Perfect Zero-Divisor Graphs of Posets and Applications to Graphs Associated with Algebraic Structures
- Enlargements of Quantales
- Multiplicative Dependent Pairs in the Sequence of Padovan Numbers
- Dirichlet Series with Periodic Coefficients, Riemann’s Functional Equation, and Real Zeros of Dirichlet L-Functions
- On the Rational Parametric Solution of Diagonal Quartic Varieties
- Theory of Certain Non-Univalent Analytic Functions
- Initial Coefficients and Fekete-Szegő Inequalities for Functions Related to van der Pol Numbers (VPN)
- A Conjecture on H3(1) for Certain Starlike Functions
- Coefficient Problems of Quasi-Convex Mappings of Type B on the Unit Ball in Complex Banach Spaces
- Complete Monotonicity and Inequalities Involving the k-Gamma and k-Polygamma Functions
- Study of Oscillation Criteria of Odd-Order Differential Equations with Mixed Neutral Terms
- On a System of Difference Equations Defined by the Product of Separable Homogeneous Functions
- On the Existence of Bi-Lipschitz Equivalent Metrics in Semimetric Spaces
- The Lehmann Type II Teissier Distribution
- Asymptotic Predictive Inference of Negative Lower Tail Index Distributions
- On Numerical Problems in Computing Life Annuities Based on the Makeham–Beard Law
- The Rational Zero-Divisor Cup-Length of Oriented Partial Flag Manifolds