Home Mathematics Theory of Certain Non-Univalent Analytic Functions
Article
Licensed
Unlicensed Requires Authentication

Theory of Certain Non-Univalent Analytic Functions

  • Kamaljeet Gangania
Published/Copyright: October 7, 2023
Become an author with De Gruyter Brill

ABSTRACT

We investigate the non-univalent function’s properties reminiscent of the theory of univalent starlike functions. Let the analytic function ψ(z)=i=1Aizi , A1 ≠ 0 be univalent in the unitdisk. Non-univalent functions may be found in the class (ψ) of analytic functions f of the form f(z)=z+k=2akzk satisfying (zf′ (z)/f (z) – 1) ≺ ψ(z). Such functions, like the Ma and Minda classes k=2 of starlike functions, also have nice geometric properties. For these functions, growth and distortion theorems have been established. Further, we obtain bounds for some sharp coefficient functionals and establish the Bohr and Rogosinki phenomenon for the class (ψ) . Non-analytic functions that share properties of analytic functions are known as poly-analytic functions. Moreover, we compute Bohr and Rogosinski’s radius for poly-analytic functions with analytic counterparts in the class (ψ) or classes of Ma-Minda starlike and convex functions.

2020 Mathematics Subject Classification: Primary 30C45; 30C35; 30C50; Secondary 35Q30

(Communicated by Stanisława Kanas)


Funding statement: The work of Kamajeet Gangania is supported by University Grant Commission, New-Delhi, India under UGC-Ref. No.:1051/(CSIR-UGC NET JUNE 2017).

REFERENCES

[1] Abdulhadi, Z.— El Hajj, L.: On the univalence of poly-analytic functions, Comput. Methods Funct. Theory 22 (2022), 169–181.10.1007/s40315-021-00378-5Search in Google Scholar

[2] Aizenberg, L.: Remarks on the Bohr and Rogosinski phenomena for power series, Anal. Math. Phys. 2(1) (2012), 69–78.10.1007/s13324-012-0024-7Search in Google Scholar

[3] Ali, R. M.—Ravichandran, V.—Seenivasagan, N.: Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), 35–46.10.1016/j.amc.2006.08.100Search in Google Scholar

[4] Alarif, N. M.—Ali, R. M.—Ravichandran, V.: On the second Hankel determinant for the kth-root transform of analytic functions, Filomat 31(2) (2017), 227–245.10.2298/FIL1702227ASearch in Google Scholar

[5] Alkhaleefah, S. A.—Kayumov, I. R.—Ponnusamy, S.: Bohr-Rogosinski inequalities for bounded analytic functions, Lobachevskii J. Math. 41(11) (2020), 2110–2119.10.1134/S1995080220110049Search in Google Scholar

[6] Bohr, H.: A theorem concerning power series, Proc. London Math. Soc. 13(2) (1914), 1–5.10.1112/plms/s2-13.1.1Search in Google Scholar

[7] Bhowmik, B.: On concave univalent functions, Math. Nachr. 285(5-6) (2012), 606–612.10.1002/mana.201000063Search in Google Scholar

[8] Bhowmik, B.—Das, N.: Bohr phenomenon for subordinating families of certain univalent functions, J. Math. Anal. Appl. 462(2) (2018), 1087–1098.10.1016/j.jmaa.2018.01.035Search in Google Scholar

[9] Chen, H.—Gauthier, P.—Hengartner, W.: Bloch constants for planar harmonic mappings, Proc. Am. Math. Soc. 128 (2000), 3231–3240.10.1090/S0002-9939-00-05590-8Search in Google Scholar

[10] Cho, N. E.—Kwon, O. S.—LECKO, A.—SIM, Y. J.: Sharp estimates of generalized Zalcman functional of early coefficients for Ma-Minda type functions, Filomat 32 18 (2018), 6267–6280.10.2298/FIL1818267CSearch in Google Scholar

[11] Gangania, K.—Kumar, S. S.: Bohr-Rogosinski phenomenon for S*(ψ) and C(ψ) , Mediterr. J. Math. 19 (2022), Art. No. 161.10.1007/s00009-022-02074-7Search in Google Scholar

[12] Gangania, K.—Kumar, S. S.: On certain generalizations of S*(ψ) , Comput. Methods Funct. Theory 22 (2022), 215–227.10.1007/s40315-021-00386-5Search in Google Scholar

[13] Gangania, K.—Kumar, S. S.: Bohr radius for some classes of Harmonic mappings, Iran. J. Sci. Technol. Trans. Sci. 46 (2022), 883–890.10.1007/s40995-022-01304-7Search in Google Scholar

[14] Gangania, K.—Kumar, S. S.: A generalized Bohr-Rogosinski phenomenon, https://arxiv.org/abs/2202.02560.Search in Google Scholar

[15] Kanas, S.—Masih, V. S.: On the behaviour of analytic representation of the generalized Pascal snail, Anal. Math. Phys. 11 (2021), Art. No. 77.10.1007/s13324-021-00506-3Search in Google Scholar

[16] Kargar, R.—Ebadian, A.—Sokol, J.: On Booth lemniscate and starlike functions, Anal. Math. Phys. 9 (2019), 143–154.10.1007/s13324-017-0187-3Search in Google Scholar

[17] Kayumov, I. R.—Khammatova, D. M.—Ponnusamy, S.: Bohr-Rogosinski phenomenon for analytic functions and Cesaro operators, J. Math. Anal. Appl. 496(2) (2021), 124–824.10.1016/j.jmaa.2020.124824Search in Google Scholar

[18] Kumar, S.—Sahoo, S. K.: A generalization of the Bohr-Rogosinski sum, https://arxiv.org/abs/2106.06502vl.Search in Google Scholar

[19] Kumar, S. S.—Kamaljeet, G.: A cardioid domain and starlike functions, Anal. Math. Phys. 11(2) (2021), Art. No. 54.10.1007/s13324-021-00483-7Search in Google Scholar

[20] Kumar, S. S.—Kamaljeet, G.: On geometrical properties of certain analytic functions, Iran. J. Sci. Technol. Trans. Sci. 45 (2021), 1437–1445.10.1007/s40995-021-01116-1Search in Google Scholar

[21] Kwon, O. S.—Lecko, A.—Sim, Y. J.: The bound of the Hankel determinant of the third kind for starlike functions, Bull. Malays. Math. Sci. Soc. 42(2) (2019), 767–780.10.1007/s40840-018-0683-0Search in Google Scholar

[22] Landau, E.—Gaier, D.: Darstellung und Begründung Einiger Neuerer Ergebnisse der Funktionentheorie, 3rd edition, Springer-Verlag, Berlin, 1986.10.1007/978-3-642-71438-2Search in Google Scholar

[23] Lecko, A.—SIM, Y. J.—SMIAROWSKA, B.: The sharp bound of the Hankel determinant of the third kind for starlike functions of order half, Complex Anal. Oper. Theory 13 (2019), 2231–2238.10.1007/s11785-018-0819-0Search in Google Scholar

[24] Lee, S. K.—Ravichandran,V.—Supramaniam, S.: Bounds for the second Hankel determinant of certain univalent functions, J. Ineq. Appl. 2013 (2013), Art. No. 281.10.1186/1029-242X-2013-281Search in Google Scholar

[25] LI, M.—SUGAWA, T.: A note on successive coefficients of convex functions, Comput. Methods Funct. Theory 17(2) (2017), 179–193.10.1007/s40315-016-0177-8Search in Google Scholar

[26] Liu, M. S.: Estimates on Bloch constants for planar harmonic mappings, Sci. China Ser. A Math 52 (2009), 1142–1146.10.1016/j.camwa.2009.01.009Search in Google Scholar

[27] Ma, W. C.: Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl. 234(1) (1999), 328–339.10.1006/jmaa.1999.6378Search in Google Scholar

[28] Ma, W. C.—Minda, D.: A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, Tianjin, Conf. Proc. Lecture Notes Anal., I Int Press, Cambridge, MA, 1992, 157–169.Search in Google Scholar

[29] Masih, V. S.—Ebadian, A.—Yalçin, S.: Some properties associated to a certain class of starlike functions, Math. Slovaca 69 (2019), 1329–1340.10.1515/ms-2017-0311Search in Google Scholar

[30] Piejko, K.—Sokół, J.: Hadamard product of analytic functions and some special regions and curves, J. Inequal. Appl. 2013 (2013), Art. No. 420.10.1186/1029-242X-2013-420Search in Google Scholar

[31] Piejko, K.—Sokół, J.: On Booth lemniscate and Hadamard product of analytic functions, Math. Slovaca 65 (2015), 1337–1344.10.1515/ms-2015-0093Search in Google Scholar

[32] Ponnusamy, S.—Vijayakumar, R.—Wirths, K. J.: Modifications of Bohr’s inequality in various settings, https://arxiv.org/abs/2104.05920.Search in Google Scholar

[33] Prokhorov, D. V.—Szynal, J.: Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 35(15) (1981), 125–143.Search in Google Scholar

[34] Rogosinski, W.: Über Bildschranken bei Potenzreihen und ihren Abschnitten, Math. Z. 17(1) (1923), 260–276.10.1007/BF01504347Search in Google Scholar

[35] Ruscheweyh, S.—Stankiewicz, J.: Subordination under convex univalent functions, Bull. Polish. Acad. Sci. Math. 33 (1985), 499–502.Search in Google Scholar

[36] Schur, I.—Szegö, G.: Über die Abschnitte einer im Einheitskreise beschrankten Potenzreihe, Sitz. Ber. Preuss. Akad. Wiss. Berl. Phys.-Math. Kl. (1925), 545–560.Search in Google Scholar

Received: 2022-07-06
Accepted: 2022-10-27
Published Online: 2023-10-07

© 2023 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0086/html
Scroll to top button