Startseite Notes on affine Killing and two-Killing vector fields
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Notes on affine Killing and two-Killing vector fields

  • Wenjie Wang
Veröffentlicht/Copyright: 28. März 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we investigate the geometry of affine Killing and two-Killing vector fields on Riemannian manifolds. More specifically, a new characterization of an Euclidean space via the affine Killing vector fields are given. Some conditions for an affine Killing and two-Killing vector field to be a conformal (homothetic) or Killing one are provided.


This work was supported by the Scientific Research Program in Zhengzhou University of Aeronautics.


Acknowledgement

The author would like to thank the anonymous reviewer for his or her some valuable suggestions that have essentially improved the original paper.

  1. Communicated by Július Korbaš

References

[1] Arias-Marco, T.—Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds, Monatsh. Math. 153 (2008), 1–18.10.1007/s00605-007-0494-0Suche in Google Scholar

[2] D’Ascanio, D.—Gilkey, P. B.—Pisani, P.: Affine Killing vector fields on homogeneous surfaces with torsion, Class. Quantum Grav. 36 (2019), Art. ID 145008, 11 pp.10.1088/1361-6382/ab2774Suche in Google Scholar

[3] Deshmukh, S.: Almost Ricci solitons isometric to spheres, Int. J. Geom. Methods Mod. Phys. 16 (2019), Art. ID 1950073, 9 pp.10.1142/S0219887819500737Suche in Google Scholar

[4] Deshmukh, S.—Turki, N. B.—Alsodais, H.: Characterizations of trivial Ricci solitons, Adv. Math. Phys. 2020, Art. ID 9826570, 6 pp.10.1155/2020/9826570Suche in Google Scholar

[5] Deshmukh, S.: A note on Ricci solitons, Symmetry 12 (2020), Art. 289, 11 pp.10.3390/sym12020289Suche in Google Scholar

[6] Duggal, K. L.: Affine conformal vector fields in semi-Riemannian manifolds, Acta Appl. Math. 23 (1991), 275–294.10.1007/BF00047139Suche in Google Scholar

[7] Fanaï, H. R.—Hessam, H.: On 2-Killing and conformal vector fields on Riemannian manifolds, Int. Math. Forum 12 (2017), 869–878.10.12988/imf.2017.46126Suche in Google Scholar

[8] Hamilton, R. S.: Three-manifolds with positive Ricci curvature, J. Differ. Geom. 17 (1982), 255–306.10.4310/jdg/1214436922Suche in Google Scholar

[9] Hamilton, R. S.: The Ricci Flow on Surfaces, Contemp. Math. 71, American Math. Soc., 1988.10.1090/conm/071/954419Suche in Google Scholar

[10] Hano, J. I.: On affine transformations of a Riemannian manifold, Nagoya Math. J. 9 (1955), 99–109.10.1017/S0027763000023321Suche in Google Scholar

[11] Oprea, T.: 2-Killing vector fields on Riemannian manifolds, Balkan J. Geom. Appl. 13 (2008), 87–92.Suche in Google Scholar

[12] Pigola, S.—Rigoli, M.—Rimoldi, M.—Setti, A. G.: Ricci almost solitons, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (2011), 757–799.10.2422/2036-2145.2011.4.01Suche in Google Scholar

[13] Shenawy, S.: 2-Killing vector fields on warped product manifolds, Int. J. Math. 26 (2015), Art. ID 1550065, 17 pp.10.1142/S0129167X15500652Suche in Google Scholar

[14] Tanno, S.—Weber, W.: Closed conformal vector fields, J. Differ. Geom. 3 (1969), 361–366.10.4310/jdg/1214429058Suche in Google Scholar

[15] Yano, K.: On harmonic and Killing vector fields, Ann. Math. 55 (1952), 38–45.10.1016/S0304-0208(08)72242-4Suche in Google Scholar

[16] Yano, K.: The Theory of Lie Derivatives and its Applications, North-Holland, Amsterdam, 1957.Suche in Google Scholar

[17] Yano, K.: Structures on Manifolds, World Scientific, Singapore, 1984.Suche in Google Scholar

Received: 2020-11-25
Accepted: 2021-05-09
Published Online: 2022-03-28
Published in Print: 2022-04-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0034/html
Button zum nach oben scrollen