Home Some exponential diophantine equations II: The equation x2 – Dy2 = kz for even k
Article
Licensed
Unlicensed Requires Authentication

Some exponential diophantine equations II: The equation x2Dy2 = kz for even k

  • Yasutsugu Fujita EMAIL logo and Maohua Le
Published/Copyright: March 28, 2022
Become an author with De Gruyter Brill

Abstract

Let D be a nonsquare integer, and let k be an integer with |k| ≥ 1 and gcd(D, k) = 1. In the part I of this paper, using some properties on the representation of integers by binary quadratic primitive forms with discriminant 4D, M.-H. Le gave a series of explicit formulas for the integer solutions (x, y, z) of the equation x2Dy2 = kz, gcd(x, y) = 1, z > 0 for 2 ∤ k or |k| is a power of 2. In this part, we give similar results for the other cases of k.

Acknowledgement

The authors thank the referees for their careful reading and pertinent suggestions.

  1. Communicated by István Gaál

References

[1] Abu Muriefah, F. S.—Bugeaud, Y.: The Diophantine equationx2 + C = yn: a brief overview, Rev. Colomb. Math. 40 (2006), 31–37.10.1515/dema-2006-0206Search in Google Scholar

[2] Bérczes, A.—Pink, I.: On generalized Lebesgue-Ramanujan-Nagell equations, An. St. Univ. Ovidius Constanta 22 (2014), 51–71.10.2478/auom-2014-0006Search in Google Scholar

[3] Bugeaud, Y.: On the Diophantine equationx2pm = ±yn, Acta Arith. 80 (1997), 213–223.10.4064/aa-80-3-213-223Search in Google Scholar

[4] Bugeaud, Y.—Shorey, T. N.: On the number of solutions of the generalized Ramanujan-Nagell equation, J. Reine Angew. Math. 539 (2001), 55–74.10.1515/crll.2001.079Search in Google Scholar

[5] Gou, S.—Wang, T.: The Diophantine equationx2 + 2a17b = yn, Czechoslovak Math. J. 62 (2012), 645–654.10.1007/s10587-012-0056-zSearch in Google Scholar

[6] Hua, L.-K.: Introduction to Number Theory, Berlin, Springer-Verlag, 1982.Search in Google Scholar

[7] Landau, E.: Vorlesungen uber Zahlentheorie, Leipzig, Hirzel, 1927.Search in Google Scholar

[8] Le, M.-H.: On the representation of integers binary quadratic primitive forms I, J. Changchun Teachers College, Nat. Sci. 3 (1986), 3–12 (in Chinese).Search in Google Scholar

[9] Le, M.-H.: On the representation of integers binary quadratic primitive forms II, J. Changsha Railway Institute 7 (1989), 6–18 (in Chinese).Search in Google Scholar

[10] Le, M.-H.: Some exponential Diophantine equations I: The equationD1x2D2y2 = λkz, J. Number Theory 55 (1995), 209–221.10.1006/jnth.1995.1138Search in Google Scholar

[11] Le, M.-H.—Hu, Y.-Z.: New advances on generalized Lebesgue-Ramanujan-Nagell equation, Adv. Math. Beijing 41 (2012), 385–397 (in Chinese).Search in Google Scholar

[12] Le, M.-H.—Soydan, G.: A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation, Surv. Math. Appl. 15 (2020), 473–523.Search in Google Scholar

[13] Mordell, L. J.: Diophantine Equations, London, Academic Press, 1969.Search in Google Scholar

[14] Pink, I.: On the Diophantine equationx2+2α3β5γ7δ = yn, Publ. Math. Debrecen 70 (2007), 149–166.10.5486/PMD.2007.3477Search in Google Scholar

[15] Saradha, N.—Srinivasan, A.: Solutions of some generalized Ramanujan-Nagell equations via binary quadratic forms, Publ. Math. Debrecen 71 (2007), 349–374.10.5486/PMD.2007.3735Search in Google Scholar

[16] WANG, J.-P.—WANG, T.-T.—ZHANG, W.-P.: The exponential Diophantine equationx2+(3n2 + 1)y = (4n2 + 1)z, Math. Slovaca 64 (2014), 1145–1152.10.2478/s12175-014-0265-zSearch in Google Scholar

[17] Yang, H.—Fu, R.: An upper bound for least solutions of the exponential Diophantine equationD1x2D2y2 = λkz, Int. J. Number Theory 11 (2015), 1107–1114.10.1142/S1793042115500608Search in Google Scholar

[18] Yang, H.—Fu, R.: The exponential diophantine equation xy + yx = z2 via a generalization of the Ankeny-Artin-Chowla conjecture, Int. J. Number Theory 14 (2018), 1223–1228.10.1142/S1793042118500756Search in Google Scholar

[19] Yang, H.—Fu, R.: A note on the Goormaghtigh equation, Period. Math. Hungar. 79 (2019), 86–93.10.1007/s10998-018-0265-9Search in Google Scholar

[20] Zhu, H.—Le, M.-H.—Soydan, G.—Togbé, A.: On the exponential Diophantine equationx2+2apb = yn, Period. Math. Hungar. 70 (2015), 233–247.10.1007/s10998-014-0073-9Search in Google Scholar

Received: 2020-07-28
Accepted: 2021-04-18
Published Online: 2022-03-28
Published in Print: 2022-04-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0023/html
Scroll to top button